IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i2p44-d354452.html
   My bibliography  Save this article

Technical Analysis on the Bitcoin Market: Trading Opportunities or Investors’ Pitfall?

Author

Listed:
  • Marina Resta

    (Department of Economics and Business Studies, University of Genova, 16126 Genova GE, Italy)

  • Paolo Pagnottoni

    (Department of Economics and Management, University of Pavia, 27100 Pavia PV, Italy)

  • Maria Elena De Giuli

    (Department of Economics and Management, University of Pavia, 27100 Pavia PV, Italy)

Abstract

In this paper we aimed to examine the profitability of technical trading rules in the Bitcoin market by using trend-following and mean-reverting strategies. We applied our strategies on the Bitcoin price series sampled both at 5-min intervals and on a daily basis, during the period 1 January 2012 to 20 August 2019. Our findings suggest that, overall, trading on daily data is more profitable than going intraday. Furthermore, we concluded that the Buy and Hold strategy outperforms the examined alternatives on an intraday basis, while Simple Moving Averages yield the best performances when dealing with daily data.

Suggested Citation

  • Marina Resta & Paolo Pagnottoni & Maria Elena De Giuli, 2020. "Technical Analysis on the Bitcoin Market: Trading Opportunities or Investors’ Pitfall?," Risks, MDPI, vol. 8(2), pages 1-15, May.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:2:p:44-:d:354452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/2/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/2/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Pagnottoni & Thomas Dimpfl, 2019. "Price discovery on Bitcoin markets," Digital Finance, Springer, vol. 1(1), pages 139-161, November.
    2. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    3. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    4. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    5. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    6. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    7. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    8. Gerritsen, Dirk F. & Bouri, Elie & Ramezanifar, Ehsan & Roubaud, David, 2020. "The profitability of technical trading rules in the Bitcoin market," Finance Research Letters, Elsevier, vol. 34(C).
    9. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    10. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.
    11. Paolo Giudici & Paolo Pagnottoni, 2020. "Vector error correction models to measure connectedness of Bitcoin exchange markets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 95-109, January.
    12. Osamah Al-Khazali & Elie Bouri & David Roubaud, 2018. "The impact of positive and negative macroeconomic news surprises: Gold versus Bitcoin," Economics Bulletin, AccessEcon, vol. 38(1), pages 373-382.
    13. Ji, Qiang & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2018. "Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 203-213.
    14. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    15. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    16. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    17. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    18. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    19. Albert S. Hu & Christine A. Parlour & Uday Rajan, 2019. "Cryptocurrencies: Stylized facts on a new investible instrument," Financial Management, Financial Management Association International, vol. 48(4), pages 1049-1068, December.
    20. Pankaj K. Jain & Thomas H. McInish & Jonathan L. Miller, 2019. "Insights from bitcoin trading," Financial Management, Financial Management Association International, vol. 48(4), pages 1031-1048, December.
    21. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    22. Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
    23. Brandvold, Morten & Molnár, Peter & Vagstad, Kristian & Andreas Valstad, Ole Christian, 2015. "Price discovery on Bitcoin exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 18-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olli-Pekka Hilmola, 2021. "On Prices of Privacy Coins and Bitcoin," JRFM, MDPI, vol. 14(8), pages 1-15, August.
    2. Mardi Dungey & Moses Kangogo & Vladimir Volkov, 2022. "Dynamic effects of network exposure on equity markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(4), pages 569-629, December.
    3. Giudici, Paolo & Leach, Thomas & Pagnottoni, Paolo, 2022. "Libra or Librae? Basket based stablecoins to mitigate foreign exchange volatility spillovers," Finance Research Letters, Elsevier, vol. 44(C).
    4. Nicoló Andrea Caserini & Paolo Pagnottoni, 2022. "Effective transfer entropy to measure information flows in credit markets," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 729-757, October.
    5. Ahmet Faruk Aysan & Asad Ul Islam Khan & Humeyra Topuz, 2021. "Bitcoin and Altcoins Price Dependency: Resilience and Portfolio Allocation in COVID-19 Outbreak," Risks, MDPI, vol. 9(4), pages 1-13, April.
    6. Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
    7. Agosto, Arianna & Cerchiello, Paola & Pagnottoni, Paolo, 2022. "Sentiment, Google queries and explosivity in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    4. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    7. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    9. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    10. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    11. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    12. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    13. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    14. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    15. Efe Caglar Cagli & Pinar Evrim Mandaci, 2021. "Information transmission between bitcoin derivatives and spot markets: high-frequency causality analysis with Fourier approximation," Economics and Business Letters, Oviedo University Press, vol. 10(4), pages 394-402.
    16. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    17. Böyükaslan, Adem & Ecer, Fatih, 2021. "Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework," Technology in Society, Elsevier, vol. 67(C).
    18. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    19. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    20. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:2:p:44-:d:354452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.