IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v23y2017i1p21-42n3.html
   My bibliography  Save this article

MCMC design-based non-parametric regression for rare event. Application to nested risk computations

Author

Listed:
  • Fort Gersende

    (LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France)

  • Gobet Emmanuel

    (Centre de Mathématiques Appliquées (CMAP), Ecole Polytechnique and CNRS, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau Cedex, France)

  • Moulines Eric

    (Centre de Mathématiques Appliquées (CMAP), Ecole Polytechnique and CNRS, Université Paris-Saclay,Route de Saclay, 91128 Palaiseau Cedex, France)

Abstract

We design and analyze an algorithm for estimating the mean of a function of a conditional expectation when the outer expectation is related to a rare event. The outer expectation is evaluated through the average along the path of an ergodic Markov chain generated by a Markov chain Monte Carlo sampler. The inner conditional expectation is computed as a non-parametric regression, using a least-squares method with a general function basis and a design given by the sampled Markov chain. We establish non-asymptotic bounds for the L2${L_{2}}$-empirical risks associated to this least-squares regression; this generalizes the error bounds usually obtained in the case of i.i.d. observations. Global error bounds are also derived for the nested expectation problem. Numerical results in the context of financial risk computations illustrate the performance of the algorithms.

Suggested Citation

  • Fort Gersende & Gobet Emmanuel & Moulines Eric, 2017. "MCMC design-based non-parametric regression for rare event. Application to nested risk computations," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 21-42, March.
  • Handle: RePEc:bpj:mcmeap:v:23:y:2017:i:1:p:21-42:n:3
    DOI: 10.1515/mcma-2017-0101
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2017-0101
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2017-0101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    3. Delattre, Sylvain & Gaïffas, Stéphane, 2011. "Nonparametric regression with martingale increment errors," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2899-2924.
    4. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    5. Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
    6. Belomestny, Denis & Kolodko, Anastasia & Schoenmakers, John G. M., 2009. "Regression methods for stochastic control problems and their convergence analysis," SFB 649 Discussion Papers 2009-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Laurent Devineau & Stéphane Loisel, 2009. "Construction d'un algorithme d'accélération de la méthode des «simulations dans les simulations» pour le calcul du capital économique Solvabilité II," Post-Print hal-00365363, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nteukam T., Oberlain & Planchet, Frédéric, 2012. "Stochastic evaluation of life insurance contracts: Model point on asset trajectories and measurement of the error related to aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 624-631.
    2. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    3. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    4. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    5. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    6. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    7. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.
    8. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    9. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    10. Patrick Cheridito & John Ery & Mario V. Wuthrich, 2021. "Assessing asset-liability risk with neural networks," Papers 2105.12432, arXiv.org.
    11. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    12. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    13. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    14. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    15. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    16. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    17. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    18. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    19. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    20. Sascha Desmettre & Ralf Korn & Javier Alejandro Varela & Norbert Wehn, 2016. "Nested MC-Based Risk Measurement of Complex Portfolios: Acceleration and Energy Efficiency," Risks, MDPI, vol. 4(4), pages 1-35, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:23:y:2017:i:1:p:21-42:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.