IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i1p16-d1568739.html
   My bibliography  Save this article

Optimal Design of Multi-Asset Options

Author

Listed:
  • Alejandro Balbás

    (Department of Business Administration, University Carlos III of Madrid, C/Madrid, 126, 28903 Getafe, Madrid, Spain)

  • Beatriz Balbás

    (Department of Economics and Business Administration, University of Alcalá, Pl. de la Victoria, 2, 28802 Alcalá de Henares, Madrid, Spain)

  • Raquel Balbás

    (Department of Financial and Actuarial Economics and Statistics, University Complutense of Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain)

Abstract

The combination of stochastic derivative pricing models and downside risk measures often leads to the paradox (risk, return) = (−infinity, +infinity) in a portfolio choice problem. The construction of a portfolio of derivatives with high expected returns and very negative downside risk (henceforth “golden strategy”) has only been studied if all the involved derivatives have the same underlying asset. This paper also considers multi-asset derivatives, gives practical methods to build multi-asset golden strategies for both the expected shortfall and the expectile risk measure, and shows that the use of multi-asset options makes the performance of the obtained golden strategy more efficient. Practical rules are given under the Black–Scholes–Merton multi-dimensional pricing model.

Suggested Citation

  • Alejandro Balbás & Beatriz Balbás & Raquel Balbás, 2025. "Optimal Design of Multi-Asset Options," Risks, MDPI, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:1:p:16-:d:1568739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Ahmadi-Javid, 2012. "Addendum to: Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1124-1128, December.
    2. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    3. Mahmoud Hamada & Michael Sherris, 2003. "Contingent claim pricing using probability distortion operators: methods from insurance risk pricing and their relationship to financial theory," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 19-47.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    6. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    2. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    3. Stephen Chan & Saralees Nadarajah, 2019. "Risk: An R Package for Financial Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1337-1351, April.
    4. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    6. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    7. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    8. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    9. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    10. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    11. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    12. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    13. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    14. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    15. R. Tyrrell Rockafellar, 2024. "Distributional robustness, stochastic divergences, and the quadrangle of risk," Computational Management Science, Springer, vol. 21(1), pages 1-30, June.
    16. Boonen, Tim J. & Han, Xia, 2024. "Optimal insurance with mean-deviation measures," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 1-24.
    17. Balibek, Emre & Köksalan, Murat, 2010. "A multi-objective multi-period stochastic programming model for public debt management," European Journal of Operational Research, Elsevier, vol. 205(1), pages 205-217, August.
    18. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    19. Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
    20. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:1:p:16-:d:1568739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.