IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i4p1190-1217.html
   My bibliography  Save this article

Bayes risk, elicitability, and the Expected Shortfall

Author

Listed:
  • Paul Embrechts
  • Tiantian Mao
  • Qiuqi Wang
  • Ruodu Wang

Abstract

Motivated by recent advances on elicitability of risk measures and practical considerations of risk optimization, we introduce the notions of Bayes pairs and Bayes risk measures. Bayes risk measures are the counterpart of elicitable risk measures, extensively studied in the recent literature. The Expected Shortfall (ES) is the most important coherent risk measure in both industry practice and academic research in finance, insurance, risk management, and engineering. One of our central results is that under a continuity condition, ES is the only class of coherent Bayes risk measures. We further show that entropic risk measures are the only risk measures which are both elicitable and Bayes. Several other theoretical properties and open questions on Bayes risk measures are discussed.

Suggested Citation

  • Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1190-1217
    DOI: 10.1111/mafi.12313
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12313
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    3. Rafael M Frongillo & Ian A Kash, 2021. "Elicitation complexity of statistical properties [A characterization of scoring rules for linear properties]," Biometrika, Biometrika Trust, vol. 108(4), pages 857-879.
    4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    5. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    6. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    7. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    8. Wang, Ruodu & Ziegel, Johanna F., 2015. "Elicitable distortion risk measures: A concise proof," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 172-175.
    9. Simon Grant & Atsushi Kajii & Ben Polak, 2000. "Temporal Resolution of Uncertainty and Recursive Non-Expected Utility Models," Econometrica, Econometric Society, vol. 68(2), pages 425-434, March.
    10. Bellini, Fabio & Bignozzi, Valeria & Puccetti, Giovanni, 2018. "Conditional expectiles, time consistency and mixture convexity properties," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 117-123.
    11. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    14. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    15. Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
    16. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    17. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    18. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    19. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    20. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    2. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    3. Adil Rengim Cetingoz & Jean-David Fermanian & Olivier Gu'eant, 2022. "Risk Budgeting Portfolios: Existence and Computation," Papers 2211.07212, arXiv.org, revised Sep 2023.
    4. N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
    5. Qiuqi Wang & Ruodu Wang & Ricardas Zitikis, 2021. "Risk measures induced by efficient insurance contracts," Papers 2109.00314, arXiv.org, revised Sep 2021.
    6. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    7. Boonen, Tim J. & Han, Xia, 2024. "Optimal insurance with mean-deviation measures," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 1-24.
    8. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    9. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    10. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    11. Qiuqi Wang & Ruodu Wang & Johanna Ziegel, 2022. "E-backtesting," Papers 2209.00991, arXiv.org, revised Dec 2024.
    12. Martin Arnaiz Iglesias & Adil Rengim Cetingoz & Noufel Frikha, 2024. "Mirror Descent Algorithms for Risk Budgeting Portfolios," Papers 2411.12323, arXiv.org.
    13. Tim J. Boonen & Xia Han, 2023. "Optimal insurance with mean-deviation measures," Papers 2312.01813, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    2. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    3. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    6. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    7. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    8. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    9. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    10. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    11. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    12. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    13. Fernanda Maria Müller & Thalles Weber Gössling & Samuel Solgon Santos & Marcelo Brutti Righi, 2024. "A comparison of Range Value at Risk (RVaR) forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 509-543, April.
    14. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    15. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    16. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    17. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    18. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    19. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    20. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1190-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.