Deep Learning Option Price Movement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
- Álvaro Arroyo & Álvaro Cartea & Fernando Moreno-Pino & Stefan Zohren, 2024. "Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers," Quantitative Finance, Taylor & Francis Journals, vol. 24(1), pages 35-57, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024.
"Panel data nowcasting: The case of price–earnings ratios,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2023. "Panel Data Nowcasting: The Case of Price-Earnings Ratios," Papers 2307.02673, arXiv.org.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022.
"Artificial intelligence and systemic risk,"
Journal of Banking & Finance, Elsevier, vol. 140(C).
- Danielsson, Jon & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," LSE Research Online Documents on Economics 111601, London School of Economics and Political Science, LSE Library.
- Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org, revised Nov 2024.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Cao, Sean & Jiang, Wei & Wang, Junbo & Yang, Baozhong, 2024. "From Man vs. Machine to Man + Machine: The art and AI of stock analyses," Journal of Financial Economics, Elsevier, vol. 160(C).
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023.
"The commodity risk premium and neural networks,"
Journal of Empirical Finance, Elsevier, vol. 74(C).
- Joelle Miffre & Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2023. "The commodity risk premium and neural networks," Post-Print hal-04322519, HAL.
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Tse, Tiffany Tsz Kwan & Hanaki, Nobuyuki & Mao, Bolin, 2024.
"Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment,"
Journal of Economic Psychology, Elsevier, vol. 102(C).
- Tiffany Tsz Kwan TSE & Nobuyuki HANAKI & Bolin MAO, 2022. "Beware the performance of an algorithm before relying on it: Evidence from a stock price forecasting experiment," ISER Discussion Paper 1194r, Institute of Social and Economic Research, Osaka University, revised Mar 2024.
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
- Bryan Kelly & Semyon Malamud & Kangying Zhou, 2024. "The Virtue of Complexity in Return Prediction," Journal of Finance, American Finance Association, vol. 79(1), pages 459-503, February.
- Catherine D'Hondt & Rudy De Winne & Eric Ghysels & Steve Raymond, 2019. "Artificial Intelligence Alter Egos: Who benefits from Robo-investing?," Papers 1907.03370, arXiv.org.
- Jiajun Gu & Zichen Yang & Xintong Lin & Sixun Chen & YuTing Lu, 2024. "AI-Enhanced Factor Analysis for Predicting S&P 500 Stock Dynamics," Papers 2412.12438, arXiv.org.
- Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
More about this item
Keywords
limit order book; model agnostic; neural networks; options;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:6:p:93-:d:1408678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.