IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i5p82-d1398008.html
   My bibliography  Save this article

Bitcoin Volatility and Intrinsic Time Using Double-Subordinated Lévy Processes

Author

Listed:
  • Abootaleb Shirvani

    (Department of Mathematical Science, Kean University, Union, NJ 07083, USA)

  • Stefan Mittnik

    (Department of Statistics, Ludwig Maximilians University, 80539 Munchen, Germany)

  • William Brent Lindquist

    (Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA)

  • Svetlozar Rachev

    (Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA)

Abstract

We propose a doubly subordinated Lévy process, the normal double inverse Gaussian (NDIG), to model the time series properties of the cryptocurrency bitcoin. By using two subordinated processes, NDIG captures both the skew and fat-tailed properties of, as well as the intrinsic time driving, bitcoin returns and gives rise to an arbitrage-free option pricing model. In this framework, we derive two bitcoin volatility measures. The first combines NDIG option pricing with the Chicago Board Options Exchange VIX model to compute an implied volatility; the second uses the volatility of the unit time increment of the NDIG model. Both volatility measures are compared to the volatility based on the historical standard deviation. With appropriate linear scaling, the NDIG process perfectly captures the observed in-sample volatility.

Suggested Citation

  • Abootaleb Shirvani & Stefan Mittnik & William Brent Lindquist & Svetlozar Rachev, 2024. "Bitcoin Volatility and Intrinsic Time Using Double-Subordinated Lévy Processes," Risks, MDPI, vol. 12(5), pages 1-21, May.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:5:p:82-:d:1398008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/5/82/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/5/82/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    4. Choi, Sangyup & Shin, Junhyeok, 2022. "Bitcoin: An inflation hedge but not a safe haven," Finance Research Letters, Elsevier, vol. 46(PB).
    5. Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayush Jha & Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2024. "Beyond the Traditional VIX: A Novel Approach to Identifying Uncertainty Shocks in Financial Markets," Papers 2411.02804, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abootaleb Shirvani & Stefan Mittnik & W. Brent Lindquist & Svetlozar T. Rachev, 2021. "Bitcoin Volatility and Intrinsic Time Using Double Subordinated Levy Processes," Papers 2109.15051, arXiv.org, revised Aug 2023.
    2. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    3. Osama Ahmed & Teresa Serra, 2015. "Economic analysis of the introduction of agricultural revenue insurance contracts in Spain using statistical copulas," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 69-79, January.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    6. Koustas, Zisimos & Serletis, Apostolos, 2005. "Rational bubbles or persistent deviations from market fundamentals?," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2523-2539, October.
    7. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    8. Belkhouja, Mustapha & Boutahary, Mohamed, 2011. "Modeling volatility with time-varying FIGARCH models," Economic Modelling, Elsevier, vol. 28(3), pages 1106-1116, May.
    9. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    10. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    11. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    12. Joseph Macri & Dipendra Sinha, 2000. "Output variability and economic growth: The case of Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 24(3), pages 275-282, September.
    13. Keblowski, Piotr & Welfe, Aleksander, 2010. "Estimation of the equilibrium exchange rate: The CHEER approach," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1385-1397, November.
    14. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    15. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    16. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    17. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    18. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    19. McMillan, David G. & Speight, Alan E. H., 2001. "Non-ferrous metals price volatility: a component analysis," Resources Policy, Elsevier, vol. 27(3), pages 199-207, September.
    20. Eryilmaz, Unal, 2021. "Enflasyonist Koşullarda Türkiye Ekonomisine İlişkin Bir Para Arzı Tahmini [Money Supply Forecast for the Turkish Economy in Inflationary Conditions]," MPRA Paper 111685, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:5:p:82-:d:1398008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.