IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v28y2021i4p361-380.html
   My bibliography  Save this article

Double Deep Q-Learning for Optimal Execution

Author

Listed:
  • Brian Ning
  • Franco Ho Ting Lin
  • Sebastian Jaimungal

Abstract

Optimal trade execution is an important problem faced by essentially all traders. Much research into optimal execution uses stringent model assumptions and applies continuous time stochastic control to solve them. Here, we instead take a model free approach and develop a variation of Deep Q-Learning to estimate the optimal actions of a trader. The model is a fully connected Neural Network trained using Experience Replay and Double DQN with input features given by the current state of the limit order book, other trading signals, and available execution actions, while the output is the Q-value function estimating the future rewards under an arbitrary action. We apply our model to nine different stocks and find that it outperforms the standard benchmark approach on most stocks using the measures of (i) mean and median out-performance, (ii) probability of out-performance, and (iii) gain-loss ratios.

Suggested Citation

  • Brian Ning & Franco Ho Ting Lin & Sebastian Jaimungal, 2021. "Double Deep Q-Learning for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(4), pages 361-380, July.
  • Handle: RePEc:taf:apmtfi:v:28:y:2021:i:4:p:361-380
    DOI: 10.1080/1350486X.2022.2077783
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2022.2077783
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2022.2077783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soohan Kim & Jimyeong Kim & Hong Kee Sul & Youngjoon Hong, 2023. "An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution," Papers 2307.10649, arXiv.org.
    2. Xianhua Peng & Chenyin Gong & Xue Dong He, 2023. "Reinforcement Learning for Financial Index Tracking," Papers 2308.02820, arXiv.org, revised Nov 2024.
    3. Kerndler, Martin, 2023. "Occupational safety in a frictional labor market," Labour Economics, Elsevier, vol. 83(C).
    4. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    5. Alexandre Carbonneau & Frédéric Godin, 2023. "Deep Equal Risk Pricing of Financial Derivatives with Non-Translation Invariant Risk Measures," Risks, MDPI, vol. 11(8), pages 1-27, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:28:y:2021:i:4:p:361-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.