IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i12p208-d1289950.html
   My bibliography  Save this article

Disentangling Trend Risk and Basis Risk with Functional Time Series

Author

Listed:
  • Yanxin Liu

    (Department of Finance, University of Nebraska-Lincoln, Lincoln, NE 68588, USA)

  • Johnny Siu-Hang Li

    (Department of Finance, The Chinese University of Hong Kong, Hong Kong SAR, China)

Abstract

In recent multi-population stochastic mortality models, one critical scientific issue is the vague distinction between trend risk and population basis risk. In particular, the cross- and auto-correlations between the innovations of the latent factors representing the common trend and the population-specific trends are often assumed to be non-existent, although they are possibly statistically significant. While it is theoretically possible to capture such correlations by treating the latent factors as a vector time series, the resulting model would contain a large number of parameters, which may in turn lead to robustness problems. In this paper, we address these issues by the use of the product–ratio model. Contrary to the prevalent assumption of non-existent correlations, the latent factors under the product–ratio model are approximately uncorrelated. This permits us to disentangle trend risk and population basis risk, thereby sparing us from the need to use a heavily parameterized vector time-series process. Compared to the augmented common factor model, our approach demonstrates improved robustness in terms of correlation structures and hedging performance, offering a new perspective on treating cross- and auto-correlations between latent factors in mortality modeling.

Suggested Citation

  • Yanxin Liu & Johnny Siu-Hang Li, 2023. "Disentangling Trend Risk and Basis Risk with Functional Time Series," Risks, MDPI, vol. 11(12), pages 1-18, November.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:12:p:208-:d:1289950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/12/208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/12/208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    2. Li, Johnny Siu-Hang & Liu, Yanxin, 2020. "The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 1-26.
    3. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    4. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    5. Hunt, Andrew & Blake, David, 2020. "Identifiability in age/period mortality models," Annals of Actuarial Science, Cambridge University Press, vol. 14(2), pages 461-499, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Zhou, Rui & Ji, Min, 2021. "Modelling mortality dependence: An application of dynamic vine copula," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 241-255.
    4. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    5. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    6. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    7. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    8. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
    9. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    10. David Blake & Christophe Courbage & Richard MacMinn & Michael Sherris, 2011. "Longevity Risk and Capital Markets: The 2010–2011 Update," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 489-500, October.
    11. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    12. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    13. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    14. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    15. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    16. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    17. Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
    18. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    19. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
    20. Li, Johnny Siu-Hang & Liu, Yanxin, 2020. "The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:12:p:208-:d:1289950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.