A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lauran Van Oers & Jeroen Guinée, 2016. "The Abiotic Depletion Potential: Background, Updates, and Future," Resources, MDPI, vol. 5(1), pages 1-12, March.
- Kihm, Alexander & Trommer, Stefan, 2014. "The new car market for electric vehicles and the potential for fuel substitution," Energy Policy, Elsevier, vol. 73(C), pages 147-157.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Iulia Dolganova & Anne Rödl & Vanessa Bach & Martin Kaltschmitt & Matthias Finkbeiner, 2020. "A Review of Life Cycle Assessment Studies of Electric Vehicles with a Focus on Resource Use," Resources, MDPI, vol. 9(3), pages 1-20, March.
- Finke, Jonas & Kachirayil, Febin & McKenna, Russell & Bertsch, Valentin, 2024. "Modelling to generate near-Pareto-optimal alternatives (MGPA) for the municipal energy transition," Applied Energy, Elsevier, vol. 376(PA).
- Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
- Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
- Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
- Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
- Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
- Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
- Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
- Krause, Jette & Thiel, Christian & Tsokolis, Dimitrios & Samaras, Zissis & Rota, Christian & Ward, Andy & Prenninger, Peter & Coosemans, Thierry & Neugebauer, Stephan & Verhoeve, Wim, 2020. "EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios," Energy Policy, Elsevier, vol. 138(C).
- Marius Kazlauskas & Indrė Bručienė & Dainius Savickas & Vilma Naujokienė & Sidona Buragienė & Dainius Steponavičius & Kęstutis Romaneckas & Egidijus Šarauskis, 2023. "Life Cycle Assessment of Winter Wheat Production Using Precision and Conventional Seeding Technologies," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
- Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
- Viri, Riku & Mäkinen, Johanna & Liimatainen, Heikki, 2021. "Modelling car fleet renewal in Finland: A model and development speed-based scenarios," Transport Policy, Elsevier, vol. 112(C), pages 63-79.
- Fetene, Gebeyehu M. & Hirte, Georg & Kaplan, Sigal & Prato, Carlo G. & Tscharaktschiew, Stefan, 2016. "The economics of workplace charging," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 93-118.
- Sophie Sfez & Jo Dewulf & Wouter De Soete & Thomas Schaubroeck & Fabrice Mathieux & Dana Kralisch & Steven De Meester, 2017. "Toward a Framework for Resource Efficiency Evaluation in Industry: Recommendations for Research and Innovation Projects," Resources, MDPI, vol. 6(1), pages 1-23, January.
- Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
- Mario Schmidt, 2018. "Scarcity and Environmental Impact of Mineral Resources—An Old and Never-Ending Discussion," Resources, MDPI, vol. 8(1), pages 1-12, December.
- Islam, Md. Monirul & Shahbaz, Muhammad & Samargandi, Nahla, 2024. "The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter?," Energy, Elsevier, vol. 293(C).
- Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
- Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
- Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
- Michael Hardinghaus & Christian Seidel & John E. Anderson, 2019. "Estimating Public Charging Demand of Electric Vehicles," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
More about this item
Keywords
battery; energy storage; environmental impact; life cycle assessment; lithium-ion; resource depletion; sodium-ion; system analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:5:y:2016:i:4:p:46-:d:85094. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.