IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i1p8-d309580.html
   My bibliography  Save this article

Estimating the Generation of Garden Waste in England and the Differences between Rural and Urban Areas

Author

Listed:
  • Paul Eades

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Sigrid Kusch-Brandt

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Sonia Heaven

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

  • Charles J. Banks

    (Water and Environmental Engineering Group, University of Southampton, Southampton SO16 7QF, UK)

Abstract

Garden waste arising from private households represents a major component of the biodegradable municipal waste stream. To design effective waste valorisation schemes, detailed information about garden waste is a prerequisite. While the biochemical composition of this material is well documented, there is a lack of knowledge regarding both the quantities arising, and quantities entering the services operated by waste management authorities. This work studied the quantities of garden waste arisings at urban and rural households along with the disposal methods used. A door-to-door interview survey, an analysis of kerbside collections of garden waste, and an assessment of materials brought by citizens to a waste recycling site were carried out in Hampshire, UK. If extrapolated nationally, the results indicate that households in England produce an average of 0.79 kg of garden waste per day, or 288 kg per year. On a per capita basis, this corresponds to an annual arising of 120 kg per person, out of which around 70% enters the collection schemes of the waste management authorities. The quantity generated by rural and urban households differed substantially, with rural households producing 1.96 ± 1.35 kg per day and urban households 0.64 ± 0.46 kg per day. Rural households adopted self-sufficient methods of garden waste management such as home composting or backyard burning to a much greater extent compared with urban households. Less than half of the generated rural garden waste entered services operated by the waste collection authorities, while urban households strongly relied on these services. A detailed breakdown of the disposal routes chosen by urban and rural householders can support authorities in tailoring more effective waste management schemes.

Suggested Citation

  • Paul Eades & Sigrid Kusch-Brandt & Sonia Heaven & Charles J. Banks, 2020. "Estimating the Generation of Garden Waste in England and the Differences between Rural and Urban Areas," Resources, MDPI, vol. 9(1), pages 1-23, January.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:1:p:8-:d:309580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Pick & Martin Dieterich & Sebastian Heintschel, 2012. "Biogas Production Potential from Economically Usable Green Waste," Sustainability, MDPI, vol. 4(4), pages 1-21, April.
    2. Mohammed J. Kabir & Ashfaque Ahmed Chowdhury & Mohammad G. Rasul, 2015. "Pyrolysis of Municipal Green Waste: A Modelling, Simulation and Experimental Analysis," Energies, MDPI, vol. 8(8), pages 1-20, July.
    3. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Safarian & Seyed Mohammad Ebrahimi Saryazdi & Runar Unnthorsson & Christiaan Richter, 2021. "Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-13, March.
    2. Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
    3. Meyer, A.K.P. & Ehimen, E.A. & Holm-Nielsen, J.B., 2014. "Bioenergy production from roadside grass: A case study of the feasibility of using roadside grass for biogas production in Denmark," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 124-133.
    4. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    5. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    6. Tungalag, Azjargal & Lee, BongJu & Yadav, Manoj & Akande, Olugbenga, 2020. "Yield prediction of MSW gasification including minor species through ASPEN plus simulation," Energy, Elsevier, vol. 198(C).
    7. Jingwen Zhao & Dong Tian & Fei Shen & Jinguang Hu & Yongmei Zeng & Churui Huang, 2019. "Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    8. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    9. Sahar Safarian & Runar Unnthorsson & Christiaan Richter, 2020. "Techno-Economic and Environmental Assessment of Power Supply Chain by Using Waste Biomass Gasification in Iceland," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-13, June.
    10. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    11. Kadambari Lokesh & Luana Ladu & Louise Summerton, 2018. "Bridging the Gaps for a ‘Circular’ Bioeconomy: Selection Criteria, Bio-Based Value Chain and Stakeholder Mapping," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    12. Poddar, Sourav & Sarat Chandra Babu, J., 2021. "Modelling and optimization of a pyrolysis plant using swine and goat manure as feedstock," Renewable Energy, Elsevier, vol. 175(C), pages 253-269.
    13. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.
    14. Safarian, Sahar & Ebrahimi Saryazdi, Seyed Mohammad & Unnthorsson, Runar & Richter, Christiaan, 2020. "Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant," Energy, Elsevier, vol. 213(C).
    15. Inghels, Dirk & Dullaert, Wout & Bloemhof, Jacqueline, 2016. "A model for improving sustainable green waste recovery," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 61-73.
    16. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland," Energy, Elsevier, vol. 197(C).
    17. Sahar Safarian & Sorena Sattari & Runar Unnthorsson & Zeinab Hamidzadeh, 2019. "Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-16, March.
    18. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    19. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    20. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:1:p:8-:d:309580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.