IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i12p143-d458063.html
   My bibliography  Save this article

Suitability of Wild Phragmites australis as Bio-Resource: Tissue Quality and Morphology of Populations from Three Continents

Author

Listed:
  • Franziska Eller

    (Department of Biology, Aarhus University, Ole Worms Alle 1, 8000 Aarhus, Denmark)

  • Xiao Guo

    (College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China)

  • Siyuan Ye

    (Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey, Qingdao Institute of Marine Geology, CGS, MLR, Fuzhou Road 62, Qingdao 266071, China)

  • Thomas J. Mozdzer

    (Bryn Mawr College, 101 N Merion Ave., Bryn Mawr, PA 19010, USA)

  • Hans Brix

    (Department of Biology, Aarhus University, Ole Worms Alle 1, 8000 Aarhus, Denmark)

Abstract

We collected and analyzed morphological characteristics and tissue nutrient concentrations of common reed ( Phragmites australis ) populations from Denmark, USA, and China, harvested late summer at the peak of the biomass production. The aim was to estimate the suitability of the biomass for different bioenergy purposes. The potential of reed as bioenergy feedstock is increasingly recognized, as the species already is utilized for construction, water purification, and pulp production. Our morphological data showed that biomass yield can be allometrically predicted to be high, especially in the reed populations of the US. However, no consistent pattern according to geographical origin was detected, and especially tissue nutrient concentrations varied within and between populations. Some mineral concentrations were above the desirable threshold for biocombustion, such as nitrogen (N) and sulfur (S). Iron (Fe) was higher than the critical toxicity concentration in many populations and hence, negatively correlated with morphological and growth traits. A different harvest time is likely to result in lower ion concentrations. Some populations had low C to N ratios, which are suitable for biomethane production, while the relatively low ash content of all populations (ranging from 3.9% to 8.5%) suggested a high heating value and theoretical energy potential. Reed biomass production is a promising alternative to fossil fuels and potentially suitable for other bio-based product. Improved knowledge is needed to examine local needs and application possibilities for reed biomass.

Suggested Citation

  • Franziska Eller & Xiao Guo & Siyuan Ye & Thomas J. Mozdzer & Hans Brix, 2020. "Suitability of Wild Phragmites australis as Bio-Resource: Tissue Quality and Morphology of Populations from Three Continents," Resources, MDPI, vol. 9(12), pages 1-17, December.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:12:p:143-:d:458063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/12/143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/12/143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
    2. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    3. Franziska Eller & Per Magnus Ehde & Claudia Oehmke & Linjing Ren & Hans Brix & Brian K. Sorrell & Stefan E. B. Weisner, 2020. "Biomethane Yield from Different European Phragmites australis Genotypes, Compared with Other Herbaceous Wetland Species Grown at Different Fertilization Regimes," Resources, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Anna M. Hansson & Eja Pedersen & Niklas P. E. Karlsson & Stefan E. B. Weisner, 2023. "Barriers and drivers for sustainable business model innovation based on a radical farmland change scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8083-8106, August.
    3. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    4. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    5. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    6. Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
    7. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    8. Hartung, Christina & Andrade, Diana & Dandikas, Vasilis & Eickenscheidt, Tim & Drösler, Matthias & Zollfrank, Cordt & Heuwinkel, Hauke, 2020. "Suitability of paludiculture biomass as biogas substrate − biogas yield and long-term effects on anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 64-71.
    9. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    10. Patience Afi Seglah & Yajing Wang & Hongyan Wang & Chunyu Gao & Yuyun Bi, 2022. "Sustainable Biofuel Production from Animal Manure and Crop Residues in Ghana," Energies, MDPI, vol. 15(16), pages 1-17, August.
    11. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Shengming Zhang & Tiehan Mei & Chonghao Zhu & Huimin Shang & Shushan Gao & Liyuan Qin & Haitao Chen, 2022. "A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw," Energies, MDPI, vol. 15(10), pages 1-13, May.
    13. Chen, Wei-Hsin & Li, Shu-Cheng & Lim, Steven & Chen, Zih-Yu & Juan, Joon Ching, 2021. "Reaction and hydrogen production phenomena of ethanol steam reforming in a catalytic membrane reactor," Energy, Elsevier, vol. 220(C).
    14. M. Jean Blair & Bruno Gagnon & Andrew Klain & Biljana Kulišić, 2021. "Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals," Land, MDPI, vol. 10(2), pages 1-28, February.
    15. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Piotr Banaszuk, 2021. "Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies," Energies, MDPI, vol. 14(24), pages 1-20, December.
    16. Raj, Kanak & Krishnan, Chandraraj, 2020. "Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis," Renewable Energy, Elsevier, vol. 153(C), pages 392-403.
    17. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.
    18. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Jang, Soo-Kyeong & Choi, June-Ho & Kim, Jong-Hwa & Kim, Hoyong & Jeong, Hanseob & Choi, In-Gyu, 2020. "Statistical analysis of glucose production from Eucalyptus pellita with individual control of chemical constituents," Renewable Energy, Elsevier, vol. 148(C), pages 298-308.
    20. Meredith Hovis & Joseph Chris Hollinger & Frederick Cubbage & Theodore Shear & Barbara Doll & J. Jack Kurki-Fox & Daniel Line & Andrew Fox & Madalyn Baldwin & Travis Klondike & Michelle Lovejoy & Brya, 2021. "Natural Infrastructure Practices as Potential Flood Storage and Reduction for Farms and Rural Communities in the North Carolina Coastal Plain," Sustainability, MDPI, vol. 13(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:12:p:143-:d:458063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.