IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i1p50-d212476.html
   My bibliography  Save this article

Evaluating the Response of Mediterranean-Atlantic Saltmarshes to Sea-Level Rise

Author

Listed:
  • Miriam Fernandez-Nunez

    (Geography, Geology and the Environment Department, Kingston University, Penrhyn road, Kingston upon Thames KT12EE, UK)

  • Helene Burningham

    (Geography Department, University College London, Pearson Building, Gower Street, London WC1E 6BT, UK)

  • Pilar Díaz-Cuevas

    (Departamento de Geographia Fisica y AGR, Universidad de Sevilla, C/Maria de Padilla sn, 41004 Sevilla, Spain)

  • José Ojeda-Zújar

    (Departamento de Geographia Fisica y AGR, Universidad de Sevilla, C/Maria de Padilla sn, 41004 Sevilla, Spain)

Abstract

Saltmarshes provide high-value ecological services and play an important role in coastal ecosystems and populations. As the rate of sea level rise accelerates in response to climate change, saltmarshes and tidal environments and the ecosystem services that they provide could be lost in those areas that lack sediment supply for vertical accretion or space for landward migration. Predictive models could play an important role in foreseeing those impacts, and to guide the implementation of suitable management plans that increase the adaptive capacity of these valuable ecosystems. The SLAMM (sea-level affecting marshes model) has been extensively used to evaluate coastal wetland habitat response to sea-level rise. However, uncertainties in predicted response will also reflect the accuracy and quality of primary inputs such as elevation and habitat coverage. Here, we assessed the potential of SLAMM for investigating the response of Atlantic-Mediterranean saltmarshes to future sea-level rise and its application in managerial schemes. Our findings show that SLAMM is sensitive to elevation and habitat maps resolution and that historical sea-level trend and saltmarsh accretion rates are the predominant input parameters that influence uncertainty in predictions of change in saltmarsh habitats. The understanding of the past evolution of the system, as well as the contemporary situation, is crucial to providing accurate uncertainty distributions and thus to set a robust baseline for future predictions.

Suggested Citation

  • Miriam Fernandez-Nunez & Helene Burningham & Pilar Díaz-Cuevas & José Ojeda-Zújar, 2019. "Evaluating the Response of Mediterranean-Atlantic Saltmarshes to Sea-Level Rise," Resources, MDPI, vol. 8(1), pages 1-20, March.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:50-:d:212476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/1/50/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/1/50/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    2. Edward B. Barbier, 2013. "Valuing Ecosystem Services for Coastal Wetland Protection and Restoration: Progress and Challenges," Resources, MDPI, vol. 2(3), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    2. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    4. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    6. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    7. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Perla Irasema Rivadeneyra García & Federico Cornacchia & Alberto Gabino Martínez Hernández & Marco Bidoia & Carlo Giupponi, 2024. "Multi-platform assessment of coastal protection and carbon sequestration in the Venice Lagoon under future scenarios," Working Papers 2024.13, Fondazione Eni Enrico Mattei.
    9. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    10. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    11. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    12. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    13. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.
    15. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Michał Burzyński & Christoph Deuster & Frédéric Docquier & Jaime de Melo, 2022. "Climate Change, Inequality, and Human Migration," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1145-1197.
    17. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Davis, Melanie J. & Woo, Isa & De La Cruz, Susan E.W., 2019. "Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    19. Mandla Dlamini & George Chirima & Nebo Jovanovic & Elhadi Adam, 2021. "Assessing the Effects of Land Use on Surface Water Quality in the Lower uMfolozi Floodplain System, South Africa," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    20. Benjamin K. Sovacool & Björn-Ola Linnér & Richard J. T. Klein, 2017. "Climate change adaptation and the Least Developed Countries Fund (LDCF): Qualitative insights from policy implementation in the Asia-Pacific," Climatic Change, Springer, vol. 140(2), pages 209-226, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:50-:d:212476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.