IDEAS home Printed from https://ideas.repec.org/a/ibn/jggjnl/v10y2017i1p33.html
   My bibliography  Save this article

Origins of The Santa Maria And Vandenberg Coastal Dune Sheets (~100-0 ka) Under Changing Sea Levels, Shoreline Orientations and Wave Directions: Long-Term Records of Coastal Sand Supply in South-Central California, USA

Author

Listed:
  • Curt Peterson
  • Christopher Ryan
  • Jack Meyer
  • David Price
  • Steve Hostetler

Abstract

Two large coastal dune sheets, including the Santa Maria dune sheet and Vandenberg dune sheet, have been analyzed for late-Quaternary distributions, ages and volumes of dune sand deposition. Six new thermoluminescence (TL) ages establish the age range of dune sand deposition from >106±21 ka to <4.1 ka in the study area. Seven late-Pleistocene TL and 14C dated mid-depth samples (≤30 m depth subsurface), yield a mean of 33 ka for the late-Pleistocene dune deposits. Both TL and 14C dated Holocene dune deposits establish a transition from weathered middle-Holocene dune deposits to unweathered latest-Holocene dune deposits after 4 ka. Marine sand supply to the large dune sheets occurred by 1) cross-shelf eolian transport during late-Pleistocene marine low-stands (70–13 ka), 2) shoreward wave transport during slowing of the Holocene marine transgression (9–5 ka), and 3) longshore littoral transport during the latest-Holocene marine high-sand (3.5–0 ka). Measured and dated dune deposit sections (n=66, ranging from 2 to 60 m depth) demonstrate substantial differences in preserved sand volumes between the two adjacent dune sheets, Santa Maria (~ 2,300x106 m3) and Vandenberg (~430x106 m3). Asymmetric distributions of dune deposit volumes between and within the dune sheets show that long-term sand supply was locally controlled by paleo-shoreline orientations relative to corresponding deep-water wave propagation directions (260–290° TN) from the North Pacific Low Pressure Area. Recently declining sand supplies and/or -trapping efficiencies in the dune sheet littoral subcells led to ongoing shoreline retreat (≥ 200 m) and under-cutting of late- Holocene eolian sand ramps at the south ends of the Santa Maria and Vandenberg dune sheets. The termination of transgressive cross-shelf sand supply and locally variable longshore retention of littoral sand confirm previously reported framework models of regional coastal sand supply. Such models help to identify shorelines that are most susceptible to future beach erosion from predicted sea level rise following ongoing global warming.Â

Suggested Citation

  • Curt Peterson & Christopher Ryan & Jack Meyer & David Price & Steve Hostetler, 2017. "Origins of The Santa Maria And Vandenberg Coastal Dune Sheets (~100-0 ka) Under Changing Sea Levels, Shoreline Orientations and Wave Directions: Long-Term Records of Coastal Sand Supply in South-Centr," Journal of Geography and Geology, Canadian Center of Science and Education, vol. 10(1), pages 1-33, March.
  • Handle: RePEc:ibn:jggjnl:v:10:y:2017:i:1:p:33
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jgg/article/download/72220/39822
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jgg/article/view/72220
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    2. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    4. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    6. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    7. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    9. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    10. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    11. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    12. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.
    14. Stewart S. R. Jamieson & Neil Ross & Guy J. G. Paxman & Fiona J. Clubb & Duncan A. Young & Shuai Yan & Jamin Greenbaum & Donald D. Blankenship & Martin J. Siegert, 2023. "An ancient river landscape preserved beneath the East Antarctic Ice Sheet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Michał Burzyński & Christoph Deuster & Frédéric Docquier & Jaime de Melo, 2022. "Climate Change, Inequality, and Human Migration," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1145-1197.
    16. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Davis, Melanie J. & Woo, Isa & De La Cruz, Susan E.W., 2019. "Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    18. Benjamin K. Sovacool & Björn-Ola Linnér & Richard J. T. Klein, 2017. "Climate change adaptation and the Least Developed Countries Fund (LDCF): Qualitative insights from policy implementation in the Asia-Pacific," Climatic Change, Springer, vol. 140(2), pages 209-226, January.
    19. Matthew D. Palmer & Benjamin J. Harrison & Jonathan M. Gregory & Helene T. Hewitt & Jason A. Lowe & Jennifer H. Weeks, 2024. "A framework for physically consistent storylines of UK future mean sea level rise," Climatic Change, Springer, vol. 177(7), pages 1-24, July.
    20. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jggjnl:v:10:y:2017:i:1:p:33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.