IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp237-256.html
   My bibliography  Save this article

Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region

Author

Listed:
  • O'Shea, Richard
  • Wall, David M.
  • Kilgallon, Ian
  • Browne, James D.
  • Murphy, Jerry D.

Abstract

The total theoretical biomethane resource of cattle slurry and grass silage in Ireland was estimated using the most up to date spatially explicit data available. The cattle slurry resource (9.6PJ) was predominantly found in southern and north-eastern regions while the grass silage resource (128.4PJ) was more concentrated in western regions. The total biomethane resource of cattle slurry and grass silage was equivalent to 6% and 76% of total natural gas consumption in Ireland in 2014/15, respectively. A sequential optimisation model was run to determine where to source cattle slurry and grass silage from, for 42 potential biomethane plant locations in Ireland. The concept was to maximise plant net present value (NPV) and develop locations in order of plant profitability. The impact of plant size, grass silage price, volatile solids ratio (VSR) of grass silage to cattle slurry, and incentive per unit energy of biomethane was assessed in 81 separate scenarios. The results indicated that total biomethane production from plants with a positive NPV ranged from 3.51PJ/a to 12.19PJ/a, considerably less than the total resource. The levelised cost of energy (LCOE) of plants was also calculated and ranged from ca. 50.2€/MWh to ca. 109€/MWh depending on the various plant parameters. LCOE decreased with increased plant size and ratio of grass silage to cattle slurry. The relationship between grass silage price and LCOE was assessed. In the median scenario (33€/twwt grass silage, VSR of 4, 75,000twwt/a plant size, 60€/MWh incentive) cattle slurry was sourced within 6.4km of the facility while grass silage was sourced within 10.5km of the facility. A high level assessment of the carbon dioxide intensity of biomethane from the median scenario was conducted and showed a potential greenhouse gas reduction of 74–79% when compared to natural gas.

Suggested Citation

  • O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:237-256
    DOI: 10.1016/j.apenergy.2016.11.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahern, Eoin P. & Deane, Paul & Persson, Tobias & Ó Gallachóir, Brian & Murphy, Jerry D., 2015. "A perspective on the potential role of renewable gas in a smart energy island system," Renewable Energy, Elsevier, vol. 78(C), pages 648-656.
    2. Singh, Anoop & Smyth, Beatrice M. & Murphy, Jerry D., 2010. "A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 277-288, January.
    3. Bojesen, M. & Birkin, M. & Clarke, G., 2014. "Spatial competition for biogas production using insights from retail location models," Energy, Elsevier, vol. 68(C), pages 617-628.
    4. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    5. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    6. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    7. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    8. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    9. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    10. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    11. Smyth, Beatrice M. & Smyth, Henry & Murphy, Jerry D., 2011. "Determining the regional potential for a grass biomethane industry," Applied Energy, Elsevier, vol. 88(6), pages 2037-2049, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    2. O’Shea, Richard & Wall, David & Kilgallon, Ian & Murphy, Jerry D., 2016. "Assessment of the impact of incentives and of scale on the build order and location of biomethane facilities and the feedstock they utilise," Applied Energy, Elsevier, vol. 182(C), pages 394-408.
    3. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    4. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    5. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    6. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    7. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    9. Murphy, Jerry D. & Browne, James & Allen, Eoin & Gallagher, Cathal, 2013. "The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel," Renewable Energy, Elsevier, vol. 55(C), pages 474-479.
    10. Browne, James & Nizami, Abdul-Sattar & Thamsiriroj, T & Murphy, Jerry D., 2011. "Assessing the cost of biofuel production with increasing penetration of the transport fuel market: A case study of gaseous biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4537-4547.
    11. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    12. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    13. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    14. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.
    15. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    16. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    17. Keogh, Niamh & Corr, D. & O'Shea, R. & Monaghan, R.F.D., 2022. "The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 323(C).
    18. Singh, Anoop & Nizami, Abdul-Sattar & Korres, Nicholas E. & Murphy, Jerry D., 2011. "The effect of reactor design on the sustainability of grass biomethane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1567-1574, April.
    19. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    20. Patrizio, P. & Chinese, D., 2016. "The impact of regional factors and new bio-methane incentive schemes on the structure, profitability and CO2 balance of biogas plants in Italy," Renewable Energy, Elsevier, vol. 99(C), pages 573-583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:237-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.