IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1692-d1593819.html
   My bibliography  Save this article

Assessing Mineral and Metal Resources in Life Cycle Assessment: An Overview of Existing Impact Assessment Methods

Author

Listed:
  • Marco Jabara

    (Department of Industrial Engineering (DII), University of Padova, 35122 Padova, Italy
    CESQA, Department of Civil, Environmental, and Architectural Engineering (ICEA), University of Padova, 35122 Padova, Italy)

  • Junzhang Wu

    (CESQA, Department of Civil, Environmental, and Architectural Engineering (ICEA), University of Padova, 35122 Padova, Italy)

  • Saverio De Franceschi

    (Department of Industrial Engineering (DII), University of Padova, 35122 Padova, Italy
    CESQA, Department of Civil, Environmental, and Architectural Engineering (ICEA), University of Padova, 35122 Padova, Italy)

  • Alessandro Manzardo

    (CESQA, Department of Civil, Environmental, and Architectural Engineering (ICEA), University of Padova, 35122 Padova, Italy)

Abstract

Mineral resources and metals are integral to modern society, with growing demand driven by recent technological advancements. Life cycle assessment (LCA) provides a valuable framework for assessing resource use, and numerous methodologies have been developed to address both the midpoint and endpoint levels of life cycle impact assessment (LCIA). This review aims to provide a comprehensive overview of the existing LCIA methodologies related to minerals and metals, with a focus on recent developments, progress made, and potential future directions. It examines these LCIA methods in terms of resources considered, underlying assumptions, data sources, and identified limitations. According to the nature of the underlying considerations, the various methods are grouped into different families. In addition, the novelty of this article is to place raw material criticality considerations alongside LCA characterization methods; however, only one class of critical raw materials, rare earth elements (REEs), is considered. These REEs are mainly used in electrical and electronic components (e.g., electric vehicle motors) and in various renewable energy technologies (e.g., wind turbines) due to their unique properties that make them difficult to substitute. However, their supply is constrained by limited global reserves and their concentration in a few countries. This situation highlights the need for more reliable and accurate data on resource production and recycling. Additionally, this review presents case studies that apply LCIA methods to real-world scenarios, illustrating current capabilities as well as areas where further research and refinement are needed.

Suggested Citation

  • Marco Jabara & Junzhang Wu & Saverio De Franceschi & Alessandro Manzardo, 2025. "Assessing Mineral and Metal Resources in Life Cycle Assessment: An Overview of Existing Impact Assessment Methods," Sustainability, MDPI, vol. 17(4), pages 1-33, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1692-:d:1593819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marisa D.M. Vieira & Thomas C. Ponsioen & Mark J. Goedkoop & Mark A.J. Huijbregts, 2016. "Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction," Resources, MDPI, vol. 5(1), pages 1-12, January.
    2. Pell, Robert S. & Wall, Frances & Yan, Xiaoyu & Bailey, Gwendolyn, 2019. "Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements," Resources Policy, Elsevier, vol. 62(C), pages 472-481.
    3. Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Ge, Zewen & Geng, Yong & Wei, Wendong & Zhong, Chen, 2022. "Assessing samarium resource efficiency in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 76(C).
    3. Zhang, Hongwei & Wang, Xinyi & Tang, Jing & Guo, Yaoqi, 2022. "The impact of international rare earth trade competition on global value chain upgrading from the industrial chain perspective," Ecological Economics, Elsevier, vol. 198(C).
    4. Mei, Yueru & Geng, Yong & Xiao, Shijiang & Su, Chang & Gao, Ziyan & Wei, Wendong, 2023. "Dynamic material flow analysis of rhenium in China for 2011–2020," Resources Policy, Elsevier, vol. 86(PB).
    5. Černý, Igor & Vaněk, Michal & Maruszewska, Ewa Wanda & Beneš, Filip, 2021. "How economic indicators impact the EU internal demand for critical raw materials," Resources Policy, Elsevier, vol. 74(C).
    6. Xiao, Shijiang & Geng, Yong & Rui, Xue & Gao, Ziyan & Su, Chang & Yao, Tianli & Zhong, Chen, 2024. "Anthropogenic cycles of praseodymium in China: 2000–2020," Resources Policy, Elsevier, vol. 92(C).
    7. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    8. Li, Yizhou & Wang, Yibo & Ge, Jianping, 2023. "Tracing the material flows of dysprosium in China from 2010 to 2020: An investigation of the partition characteristics of different rare earth mining areas," Resources Policy, Elsevier, vol. 85(PB).
    9. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    10. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).
    11. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    12. Elnaz Amirahmadi & Jan Moudrý & Petr Konvalina & Stefan Josef Hörtenhuber & Mohammad Ghorbani & Reinhard W. Neugschwandtner & Zhixiang Jiang & Theresa Krexner & Marek Kopecký, 2022. "Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1692-:d:1593819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.