IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v14y2025i3p34-d1595829.html
   My bibliography  Save this article

Transforming Biomass Waste into Hydrochars and Porous Activated Carbon: A Characterization Study

Author

Listed:
  • Suhas

    (Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, India)

  • Monika Chaudhary

    (Department of Chemistry, Hariom Saraswati P.G. College, Dhanauri, Haridwar 247667, India)

  • Shubham Chaudhary

    (Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, India)

  • Shivangi Chaubey

    (Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, India)

  • Isabel Pestana da Paixão Cansado

    (MED—Mediterranean Institute for Agriculture, Environment and Development & Change—Global Change and Sustainability Institute and Department of Chemistry and Biochemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, nº 59, 7000-671 Évora, Portugal)

  • Mohammad Hadi Dehghani

    (Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
    Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran 1416634793, Iran)

  • Inderjeet Tyagi

    (Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata 700053, India)

  • Rama Gaur

    (Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan, Gandhinagar 382426, India)

Abstract

Hydrothermal carbonization (HTC) is an environmentally friendly process for transforming biomass into sustainable hydrochar, which is a carbon-rich material with a variety of potential applications. Herein, Tectona grandis seeds (TGs) were transformed into hydrochars using HTC at low temperatures (180–250 °C) and autogenous pressure. The prepared hydrochars were rich in oxygenated functional groups. The optimized hydrochar, HC-230-4 (prepared at 230 °C, for 4 h), presented a ratio of H/C = 0.95 and O/C = 0.29, an improved degree of coalification, and a high heating value (26.53 MJ kg −1 ), which can replace bituminous coals in the power sector. The prepared hydrochar was further activated in the presence of CO 2 to prepare activated carbon (AC). XRD, TGA, FTIR, FE-SEM, and BET techniques were used to characterize raw biomass (TGs), hydrochar, and ACs, to identify the potential applications for the developed materials. BET studies revealed that the hydrochar has limited porosity, with a low surface area (14.41 m 2 g −1 ) and porous volume. On the other hand, the derived AC (AC-850-5) has a high surface area (729.70 m 2 g −1 ) and appreciable total and microporous volumes (0.392 cm 3 g −1 and 0.286 cm 3 g −1 ). The use of biomass, mainly waste biomass, for the production of carbon-rich materials is an effective strategy for managing and valorizing waste biomass resources, reducing environmental pollution, and improving sustainability, being in line with the principles of circularity.

Suggested Citation

  • Suhas & Monika Chaudhary & Shubham Chaudhary & Shivangi Chaubey & Isabel Pestana da Paixão Cansado & Mohammad Hadi Dehghani & Inderjeet Tyagi & Rama Gaur, 2025. "Transforming Biomass Waste into Hydrochars and Porous Activated Carbon: A Characterization Study," Resources, MDPI, vol. 14(3), pages 1-20, February.
  • Handle: RePEc:gam:jresou:v:14:y:2025:i:3:p:34-:d:1595829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/14/3/34/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/14/3/34/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    2. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    3. Elena Diaz & Ines Sanchis & Charles J. Coronella & Angel F. Mohedano, 2022. "Activated Carbons from Hydrothermal Carbonization and Chemical Activation of Olive Stones: Application in Sulfamethoxazole Adsorption," Resources, MDPI, vol. 11(5), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    3. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Liang, Wang & Wang, Guangwei & Jiao, Kexin & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Li, Jinhua & Wang, Chuan, 2021. "Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization," Renewable Energy, Elsevier, vol. 173(C), pages 318-328.
    5. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    6. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    7. Djandja, Oraléou Sangué & Duan, Pei-Gao & Yin, Lin-Xin & Wang, Zhi-Cong & Duo, Jia, 2021. "A novel machine learning-based approach for prediction of nitrogen content in hydrochar from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 232(C).
    8. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
    9. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
    10. Zhang, Xianwen & Deng, Hongkun & Yang, Jing & Yu, Zhenhua & Xing, Xianjun & Ma, Peiyong, 2020. "Isoconversional kinetics of pyrolysis of vaporthermally carbonized bamboo," Renewable Energy, Elsevier, vol. 149(C), pages 701-707.
    11. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
    14. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    15. Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
    16. Zhang, Chaoyue & Ma, Xiaoqian & Chen, Xinfei & Tian, Yunlong & Zhou, Yi & Lu, Xiaoluan & Huang, Tao, 2020. "Conversion of water hyacinth to value-added fuel via hydrothermal carbonization," Energy, Elsevier, vol. 197(C).
    17. Aaron E. Brown & James M. Hammerton & Miller Alonso Camargo-Valero & Andrew B. Ross, 2022. "Integration of Hydrothermal Carbonisation and Anaerobic Digestion for the Energy Valorisation of Grass," Energies, MDPI, vol. 15(10), pages 1-21, May.
    18. Dana-Claudia Farcas-Flamaropol & Radu Iatan & Petru Cardei & Ion Durbaca & Elena Surdu & Nicoleta Sporea, 2024. "Dewatering of Sludge Through Vibratory Sieving," Sustainability, MDPI, vol. 17(1), pages 1-16, December.
    19. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    20. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:14:y:2025:i:3:p:34-:d:1595829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.