IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p747-d527415.html
   My bibliography  Save this article

A Continuous Review Production-Inventory System with a Variable Preparation Time in a Fuzzy Random Environment

Author

Listed:
  • Amalendu Singha Mahapatra

    (Department of Basic Science and Humanities, Techno International New Town (Formerly Techno India College of Technology), Rajarhat 700156, Kolkata, India)

  • Hardik N Soni

    (Chimanbhai Patel Post Graduate Institute of Computer Applications, Ahmedabad 380015, Gujarat, India)

  • Maheswar Singha Mahapatra

    (School of Business, FLAME University, Pune 412115, India)

  • Biswajit Sarkar

    (Department of Industrial Engineering, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, Korea)

  • Sanat Majumder

    (Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur 711103, West Bengal, India)

Abstract

With the increase in the varieties products and the increasing uncertainty about product demand, the production preparation time is a significant factor in addressing these issues. The trade-off between the reduction of the production preparation time and the associated cost remains a critical decision. With this backdrop, this study presents a continuous review production-inventory model with a variable production preparation time and a time-dependent setup cost. The demand during the preparation time is captured through a min-max distribution-free approach. In a stochastic framework, the order quantity, reorder point, and setup time are optimized by minimizing the expected cost considering the time-value effect. Further, a fuzzy model is formulated to tackle the imprecise nature of the production setup time and demand. Two algorithms are developed using an analytical approach to obtain the optimal solution. A numerical illustration is given to present the key insights of the model for effective inventory management. It is observed that order quantity and total cost are more sensitive at the lower side of the optimal setup time rather than at the higher side. The discount rate is also found to be a sensitive factor while minimizing the total expected cost.

Suggested Citation

  • Amalendu Singha Mahapatra & Hardik N Soni & Maheswar Singha Mahapatra & Biswajit Sarkar & Sanat Majumder, 2021. "A Continuous Review Production-Inventory System with a Variable Preparation Time in a Fuzzy Random Environment," Mathematics, MDPI, vol. 9(7), pages 1-27, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:747-:d:527415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarker, Bhaba R. & Coates, Eyler Robert, 1997. "Manufacturing setup cost reduction under variable lead times and finite opportunities for investment," International Journal of Production Economics, Elsevier, vol. 49(3), pages 237-247, May.
    2. Jonas C. P. Yu & Hui-Ming Wee & Gede A. Widyadana & Jer-Yuan Chang, 2010. "The Effects Of Inflation And Time Value Of Money On A Production Model With A Random Product Life Cycle," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(04), pages 437-456.
    3. Kim, Jeon G. & Chatfield, Dean & Harrison, Terry P. & Hayya, Jack C., 2006. "Quantifying the bullwhip effect in a supply chain with stochastic lead time," European Journal of Operational Research, Elsevier, vol. 173(2), pages 617-636, September.
    4. C. Krishnamoorthi & S. Panayappan, 2013. "An EPQ model for an imperfect production system with rework and shortages," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 17(1), pages 104-124.
    5. Dipak Kumar Jana & Barun Das & Tapan Kumar Roy, 2013. "A Partial Backlogging Inventory Model for Deteriorating Item under Fuzzy Inflation and Discounting over Random Planning Horizon: A Fuzzy Genetic Algorithm Approach," Advances in Operations Research, Hindawi, vol. 2013, pages 1-13, July.
    6. Oshmita Dey, 2019. "A fuzzy random integrated inventory model with imperfect production under optimal vendor investment," Operational Research, Springer, vol. 19(1), pages 101-115, March.
    7. Mitali Sarkar & Byung Do Chung, 2020. "Flexible work-in-process production system in supply chain management under quality improvement," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 3821-3838, July.
    8. Panda, D. & Kar, S. & Maity, K. & Maiti, M., 2008. "A single period inventory model with imperfect production and stochastic demand under chance and imprecise constraints," European Journal of Operational Research, Elsevier, vol. 188(1), pages 121-139, July.
    9. Dey, Jayanta Kumar & Mondal, Shyamal Kumar & Maiti, Manoranjan, 2008. "Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money," European Journal of Operational Research, Elsevier, vol. 185(1), pages 170-194, February.
    10. Wee, Hui-Ming & Huang, Yen-Deng & Wang, Wan-Tsu & Cheng, Yung-Lung, 2014. "An EPQ model with partial backorders considering two backordering costs," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 898-907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    2. Afonso Vaz de Oliveira & Carina M. Oliveira Pimentel & Radu Godina & João Carlos de Oliveira Matias & Susana M. Palavra Garrido, 2022. "Improvement of the Logistics Flows in the Receiving Process of a Warehouse," Logistics, MDPI, vol. 6(1), pages 1-23, March.
    3. Rajesh Paramanik & Nirmal Kumar & Sanat Kumar Mahato, 2022. "Solution for the optimality of an intuitionistic fuzzy redundancy allocation problem for complex system using Yager’s ranking method of defuzzification with soft computation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 615-624, April.
    4. Vitor Anes & António Abreu & Ana Dias & João Calado, 2022. "A Reputational-Risk-Based Match Selection Framework for Collaborative Networks in the Logistics Sector," Sustainability, MDPI, vol. 14(7), pages 1-24, April.
    5. Pablo Becerra & Josefa Mula & Raquel Sanchis, 2022. "Sustainable Inventory Management in Supply Chains: Trends and Further Research," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    6. Yasaman Mashayekhy & Amir Babaei & Xue-Ming Yuan & Anrong Xue, 2022. "Impact of Internet of Things (IoT) on Inventory Management: A Literature Survey," Logistics, MDPI, vol. 6(2), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashoke Kumar Bera & Dipak Kumar Jana, 2017. "Multi-item imperfect production inventory model in Bi-fuzzy environments," OPSEARCH, Springer;Operational Research Society of India, vol. 54(2), pages 260-282, June.
    2. Bhunia, A.K. & Shaikh, Ali Akbar, 2015. "An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 831-850.
    3. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    4. Manoranjan De & Barun Das & Manoranjan Maiti, 2016. "EPL models for complementary and substitute items under imperfect production process with promotional cost and selling price dependent demands," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 259-277, June.
    5. Huang, Chao-Kuei & Tsai, Deng-Maw & Wu, Ji-Cheng & Chung, Kun-Jen, 2010. "An integrated vendor-buyer inventory model with order-processing cost reduction and permissible delay in payments," European Journal of Operational Research, Elsevier, vol. 202(2), pages 473-478, April.
    6. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    7. Sudip Adak & G. S. Mahapatra, 2022. "Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration," Annals of Operations Research, Springer, vol. 315(2), pages 1551-1571, August.
    8. A. K. Manna & B. Das & J. K. Dey & S. K. Mondal, 2018. "An EPQ model with promotional demand in random planning horizon: population varying genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1515-1531, October.
    9. Bimal Kumar Sett & Bikash Koli Dey & Biswajit Sarkar, 2020. "Autonomated Inspection Policy for Smart Factory—An Improved Approach," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    10. Ciancimino, Elena & Cannella, Salvatore & Canca Ortiz, José David & Framiñán Torres, José Manuel, 2009. "Análisis multinivel de cadenas de suministros: dos técnicas de resolución del efecto bullwhip // Supply Chain Multi-level Analysis: Two Bullwhip Dampening Approaches," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 8(1), pages 7-28, December.
    11. Heibatolah Sadeghi & Hêriş Golpîra & Faicel Hnaien & Cosimo Magazzino, 2023. "Pricing-inventory model with discrete demand and delivery orders," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 119-139.
    12. Subrata Panja & Shyamal Kumar Mondal, 2023. "Sustainable production inventory management through bi-level greening performance in a three-echelon supply chain," Operational Research, Springer, vol. 23(1), pages 1-55, March.
    13. Yang, Y. & Lin, J. & Liu, G. & Zhou, L., 2021. "The behavioural causes of bullwhip effect in supply chains: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 236(C).
    14. Hossein Salehi & Ata Allah Taleizadeh & Reza Tavakkoli-Moghaddam, 2016. "An EOQ model with random disruption and partial backordering," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2600-2609, May.
    15. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    16. Hernan Caceres & Dongchen Yu & Alexander Nikolaev, 2018. "Evaluating shortfall distributions in periodic inventory systems with stochastic endogenous demands and lead-times," Annals of Operations Research, Springer, vol. 271(2), pages 405-427, December.
    17. Kim, Taebok & Glock, Christoph H. & Kwon, Yongjang, 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Omega, Elsevier, vol. 43(C), pages 30-40.
    18. Mitali Sarkar & Li Pan & Bikash Koli Dey & Biswajit Sarkar, 2020. "Does the Autonomation Policy Really Help in a Smart Production System for Controlling Defective Production?," Mathematics, MDPI, vol. 8(7), pages 1-21, July.
    19. Asif Iqbal Malik & Biswajit Sarkar, 2019. "Coordinating Supply-Chain Management under Stochastic Fuzzy Environment and Lead-Time Reduction," Mathematics, MDPI, vol. 7(5), pages 1-28, May.
    20. Tiwari, Sunil & Cárdenas-Barrón, Leopoldo Eduardo & Khanna, Aditi & Jaggi, Chandra K., 2016. "Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment," International Journal of Production Economics, Elsevier, vol. 176(C), pages 154-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:747-:d:527415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.