IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v25y1996i1p13-34.html
   My bibliography  Save this article

The Consistency Principle for Games in Strategic Forms

Author

Listed:
  • Peleg, Bezalel
  • Tijs, Stef

Abstract

We start with giving an axiomatic characterization of the Nash equilibrium (NE) correspondence in terms of consistency, converse consistency and one-person rationality. Then axiomatizations are given of the strong NE correspondence, the coalition-proof NE correspondence and the semi-strong NE. In all these characterizations consistency and suitable variants of converse consistency play a role. Finally, the dominant NE correspondence is characterized. We also indicate how to generalize our results to Bayesian and extensive games.

Suggested Citation

  • Peleg, Bezalel & Tijs, Stef, 1996. "The Consistency Principle for Games in Strategic Forms," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 13-34.
  • Handle: RePEc:spr:jogath:v:25:y:1996:i:1:p:13-34
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moulin, H. & Peleg, B., 1982. "Cores of effectivity functions and implementation theory," Journal of Mathematical Economics, Elsevier, vol. 10(1), pages 115-145, June.
    2. Thomson,William & Lensberg,Terje, 2006. "Axiomatic Theory of Bargaining with a Variable Number of Agents," Cambridge Books, Cambridge University Press, number 9780521027038, September.
    3. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    4. Tadenuma, K, 1992. "Reduced Games, Consistency, and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 325-334.
    5. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    6. Potters, Jos A M, 1991. "An Axiomatization of the Nucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 365-373.
    7. Peleg, Bezalel, 1985. "An axiomatization of the core of cooperative games without side payments," Journal of Mathematical Economics, Elsevier, vol. 14(2), pages 203-214, April.
    8. Maschler, M. & Potters, J.A.M. & Tijs, S.H., 1992. "The general nucleolus and the reduced game property," Other publications TiSEM ab187dab-1b5b-40c3-a673-8, Tilburg University, School of Economics and Management.
    9. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    10. Borm, P. E. M. & Tijs, S. H., 1992. "Strategic claim games corresponding to an NTU-game," Games and Economic Behavior, Elsevier, vol. 4(1), pages 58-71, January.
    11. Maschler, M & Potters, J A M & Tijs, S H, 1992. "The General Nucleolus and the Reduced Game Property," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 85-106.
    12. Wako, Jun, 1991. "Strong Core and Competitive Equilibria of an Exchange Market with Indivisible Goods," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(4), pages 843-852, November.
    13. repec:dau:papers:123456789/13220 is not listed on IDEAS
    14. Neyman, Abraham, 1989. "Uniqueness of the Shapley value," Games and Economic Behavior, Elsevier, vol. 1(1), pages 116-118, March.
    15. Bernheim, B. Douglas & Peleg, Bezalel & Whinston, Michael D., 1987. "Coalition-Proof Nash Equilibria I. Concepts," Journal of Economic Theory, Elsevier, vol. 42(1), pages 1-12, June.
    16. Peleg, B, 1987. "On the Reduced Game Property and Its Converse: A Correction," International Journal of Game Theory, Springer;Game Theory Society, vol. 16(4), pages 290-290.
    17. repec:tiu:tiutis:e52774ec-5d61-41f8-8325-b9cf91b9f6a4 is not listed on IDEAS
    18. Lensberg, Terje, 1988. "Stability and the Nash solution," Journal of Economic Theory, Elsevier, vol. 45(2), pages 330-341, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    2. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.
    3. M. Hinojosa & E. Romero-Palacios & J. Zarzuelo, 2015. "Consistency of the Shapley NTU value in G-hyperplane games," Review of Economic Design, Springer;Society for Economic Design, vol. 19(4), pages 259-278, December.
    4. Chun, Youngsub, 2002. "The Converse Consistency Principle in Bargaining," Games and Economic Behavior, Elsevier, vol. 40(1), pages 25-43, July.
    5. Nir Dagan, 1995. "Consistent Solutions in Exchange Economies: a Characterization of the Price Mechanism," Economic theory and game theory 011, Nir Dagan.
    6. repec:ebl:ecbull:v:3:y:2008:i:70:p:1-8 is not listed on IDEAS
    7. Orshan, Gooni & Zarzuelo, Jose M., 2000. "The Bilateral Consistent Prekernel for NTU Games," Games and Economic Behavior, Elsevier, vol. 32(1), pages 67-84, July.
    8. Serrano, Roberto & Volij, Oscar, 1998. "Axiomatizations of neoclassical concepts for economies," Journal of Mathematical Economics, Elsevier, vol. 30(1), pages 87-108, August.
    9. Sudhölter, Peter & Zarzuelo, José M., 2017. "Characterizations of highway toll pricing methods," European Journal of Operational Research, Elsevier, vol. 260(1), pages 161-170.
    10. Potters, Jos & Sudholter, Peter, 1999. "Airport problems and consistent allocation rules," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 83-102, July.
    11. Yu-Hsien Liao, 2008. "The Maximal Equal Allocation of Nonseparable Costs on Multi-Choice Games," Economics Bulletin, AccessEcon, vol. 3(70), pages 1-8.
    12. Pérez-Castrillo, David & Sun, Chaoran, 2021. "Value-free reductions," Games and Economic Behavior, Elsevier, vol. 130(C), pages 543-568.
    13. Pedro Calleja & Francesc Llerena, 2017. "Rationality, aggregate monotonicity and consistency in cooperative games: some (im)possibility results," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(1), pages 197-220, January.
    14. Yan-An Hwang, 2013. "On the core: complement-reduced game and max-reduced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 339-355, May.
    15. Nir Dagan, 1996. "Consistency and the Walrasian allocations correspondence," Economics Working Papers 151, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Hinojosa, M.A. & Romero, E. & Zarzuelo, J.M., 2012. "Consistency of the Harsanyi NTU configuration value," Games and Economic Behavior, Elsevier, vol. 76(2), pages 665-677.
    17. Nizamogullari, Duygu & Özkal-Sanver, İpek, 2014. "Characterization of the core in full domain marriage problems," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 34-42.
    18. Yan-An Hwang & Yu-Hsien Liao, 2011. "The multi-core, balancedness and axiomatizations for multi-choice games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 677-689, November.
    19. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    20. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.
    21. Voorneveld, M. & van den Nouweland, C.G.A.M., 1998. "Cooperative Multicriteria Games with Public and Private Criteria : An Investigation of Core Concepts," Discussion Paper 1998-62, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:25:y:1996:i:1:p:13-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.