IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3047-d689392.html
   My bibliography  Save this article

Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model

Author

Listed:
  • Natalia C. Roşca

    (Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

  • Alin V. Roşca

    (Department of Statistics-Forecasts Mathematics, Faculty of Economics and Business Administration, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

  • Emad H. Aly

    (Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt)

  • Ioan Pop

    (Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

Abstract

This paper studies the boundary layer flow and heat transfer characteristics past a permeable isothermal stretching/shrinking surface using both nanofluid and hybrid nanofluid flows (called modified Buongiorno nonliquid model). Using appropriate similarity variables, the PDEs are transformed into ODEs to be solved numerically using the function bvp4c from MATLAB. It was found that the solutions of the resulting system have two branches, upper and lower branch solutions, in a certain range of the suction, stretching/shrinking and hybrid nanofluids parameters. Both the analytic and numerical results are obtained for the skin friction coefficient, local Nusselt number, and velocity and temperature distributions, for several values of the governing parameters. It results in the governing parameters considerably affecting the flow and heat transfer characteristics.

Suggested Citation

  • Natalia C. Roşca & Alin V. Roşca & Emad H. Aly & Ioan Pop, 2021. "Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model," Mathematics, MDPI, vol. 9(23), pages 1-12, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3047-:d:689392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    2. Emad H. Aly, 2015. "Radiation and MHD Boundary Layer Stagnation-Point of Nanofluid Flow towards a Stretching Sheet Embedded in a Porous Medium: Analysis of Suction/Injection and Heat Generation/Absorption with Effect of ," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Araceli Queiruga-Dios & María Jesus Santos Sánchez & Fatih Yilmaz & Deolinda M. L. Dias Rasteiro & Jesús Martín-Vaquero & Víctor Gayoso Martínez, 2022. "Mathematics and Its Applications in Science and Engineering," Mathematics, MDPI, vol. 10(19), pages 1-2, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    2. Bhalla, Vishal & Khullar, Vikrant & Tyagi, Himanshu, 2018. "Experimental investigation of photo-thermal analysis of blended nanoparticles (Al2O3/Co3O4) for direct absorption solar thermal collector," Renewable Energy, Elsevier, vol. 123(C), pages 616-626.
    3. Kohilavani Naganthran & Roslinda Nazar & Zailan Siri & Ishak Hashim, 2021. "Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    6. Chandran, M. Neelesh & Manikandan, S. & Suganthi, K.S. & Rajan, K.S., 2017. "Novel hybrid nanofluid with tunable specific heat and thermal conductivity: Characterization and performance assessment for energy related applications," Energy, Elsevier, vol. 140(P1), pages 27-39.
    7. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    8. Hamed Bagheri & Mohammadali Behrang & Ehsanolah Assareh & Mohsen Izadi & Mikhail A. Sheremet, 2019. "Free Convection of Hybrid Nanofluids in a C-Shaped Chamber under Variable Heat Flux and Magnetic Field: Simulation, Sensitivity Analysis, and Artificial Neural Networks," Energies, MDPI, vol. 12(14), pages 1-17, July.
    9. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    10. M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
    11. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    12. Minea, Alina Adriana & El-Maghlany, Wael M., 2018. "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison," Renewable Energy, Elsevier, vol. 120(C), pages 350-364.
    13. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    14. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    15. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    16. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
    17. Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
    18. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    19. Nur Adilah Liyana Aladdin & Norfifah Bachok, 2021. "Duality Solutions in Hydromagnetic Flow of SWCNT-MWCNT/Water Hybrid Nanofluid over Vertical Moving Slender Needle," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    20. Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3047-:d:689392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.