IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3203-d700164.html
   My bibliography  Save this article

Comprehensible Visualization of Multidimensional Data: Sum of Ranking Differences-Based Parallel Coordinates

Author

Listed:
  • Ádám Ipkovich

    (MTA-PE “Lendület” Complex Systems Monitoring Research Group, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary)

  • Károly Héberger

    (ELKH Research Centre for Natural Sciences, Institute of Excellence of the Hungarian Academy of Sciences, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary)

  • János Abonyi

    (MTA-PE “Lendület” Complex Systems Monitoring Research Group, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary)

Abstract

A novel visualization technique is proposed for the sum of ranking differences method (SRD) based on parallel coordinates. An axis is defined for each variable, on which the data are depicted row-wise. By connecting data, the lines may intersect. The fewer intersections between the variables, the more similar they are and the clearer the figure becomes. Therefore, the visualization depends on what techniques are used to order the variables. The key idea is to employ the SRD method to measure the degree of similarity of the variables, establishing a distance-based order. The distances between the axes are not uniformly distributed in the proposed visualization; their closeness reflects similarity, according to their SRD value. The proposed algorithm identifies false similarities through an iterative approach, where the angles between the SRD values determine which side a variable is plotted. Visualization of the algorithm is provided by MATLAB/Octave source codes. The proposed tool is applied to study how the sources of greenhouse gas emissions can be grouped based on the statistical data of the countries. A comparison to multidimensional scaling (MDS)-based ordering is also given. The use case demonstrates the applicability of the method and the synergies of the incorporation of the SRD method into parallel coordinates.

Suggested Citation

  • Ádám Ipkovich & Károly Héberger & János Abonyi, 2021. "Comprehensible Visualization of Multidimensional Data: Sum of Ranking Differences-Based Parallel Coordinates," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3203-:d:700164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikhail Sofiev & James J. Winebrake & Lasse Johansson & Edward W. Carr & Marje Prank & Joana Soares & Julius Vira & Rostislav Kouznetsov & Jukka-Pekka Jalkanen & James J. Corbett, 2018. "Cleaner fuels for ships provide public health benefits with climate tradeoffs," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Sziklai, Balázs R., 2021. "Ranking institutions within a discipline: The steep mountain of academic excellence," Journal of Informetrics, Elsevier, vol. 15(2).
    3. Miimu Airaksinen & Pellervo Matilainen, 2011. "A Carbon Footprint of an Office Building," Energies, MDPI, vol. 4(8), pages 1-14, August.
    4. Junayed Pasha & Maxim A. Dulebenets & Masoud Kavoosi & Olumide F. Abioye & Oluwatosin Theophilus & Hui Wang & Raphael Kampmann & Weihong Guo, 2020. "Holistic tactical-level planning in liner shipping: an exact optimization approach," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-35, December.
    5. Balázs R Sziklai & Károly Héberger, 2020. "Apportionment and districting by Sum of Ranking Differences," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    6. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    7. Gyula Dörgő & Viktor Sebestyén & János Abonyi, 2018. "Evaluating the Interconnectedness of the Sustainable Development Goals Based on the Causality Analysis of Sustainability Indicators," Sustainability, MDPI, vol. 10(10), pages 1-26, October.
    8. Hinrichs-Rahlwes, Rainer, 2013. "Renewable energy: Paving the way towards sustainable energy security," Renewable Energy, Elsevier, vol. 49(C), pages 10-14.
    9. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    10. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferenc Bognár & Csaba Hegedűs, 2022. "Analysis and Consequences on Some Aggregation Functions of PRISM (Partial Risk Map) Risk Assessment Method," Mathematics, MDPI, vol. 10(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    2. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    3. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    4. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    5. Frank Hensgen & Michael Wachendorf, 2018. "Aqueous Leaching Prior to Dewatering Improves the Quality of Solid Fuels from Grasslands," Energies, MDPI, vol. 11(4), pages 1-13, April.
    6. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    7. Galadima, Ahmad & Muraza, Oki, 2019. "Catalytic thermal conversion of CO2 into fuels: Perspective and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Abid, Nabila & Ahmad, Fayyaz & Aftab, Junaid & Razzaq, Asif, 2023. "A blessing or a burden? Assessing the impact of Climate Change Mitigation efforts in Europe using Quantile Regression Models," Energy Policy, Elsevier, vol. 178(C).
    9. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    10. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    11. Fabio De Felice & Antonella Petrillo, 2021. "Green Transition: The Frontier of the Digicircular Economy Evidenced from a Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, October.
    12. Efraim Hernández-Orozco & Ivonne Lobos-Alva & Mario Cardenas-Vélez & David Purkey & Måns Nilsson & Piedad Martin, 2022. "The application of soft systems thinking in SDG interaction studies: a comparison between SDG interactions at national and subnational levels in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8930-8964, June.
    13. Luigi Aldieri & Mohsen Brahmi & Bruna Bruno & Concetto Paolo Vinci, 2021. "Circular Economy Business Models: The Complementarities with Sharing Economy and Eco-Innovations Investments," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    14. Escribano Francés, Gonzalo & Marín-Quemada, José María & San Martín González, Enrique, 2013. "RES and risk: Renewable energy's contribution to energy security. A portfolio-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 549-559.
    15. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.
    16. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    17. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    18. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    19. Zheng Wan & Jiawei Ge & Jihong Chen, 2018. "Energy-Saving Potential and an Economic Feasibility Analysis for an Arctic Route between Shanghai and Rotterdam: Case Study from China’s Largest Container Sea Freight Operator," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    20. Joana Costa & Inês Amorim & João Reis & Nuno Melão, 2023. "User communities: from nice-to-have to must-have," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3203-:d:700164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.