IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v269y2015icp520-535.html
   My bibliography  Save this article

A novel family of composite Newton–Traub methods for solving systems of nonlinear equations

Author

Listed:
  • Sharma, Janak Raj
  • Sharma, Rajni
  • Kalra, Nitin

Abstract

We present a family of three-step iterative methods of convergence order five for solving systems of nonlinear equations. The methodology is based on the two-step Traub’s method with cubic convergence for solving scalar equations. Computational efficiency of the new methods is considered and compared with some well-known existing methods. Numerical tests are performed on some problems of different nature, which confirm robust and efficient convergence behavior of the proposed methods. Moreover, theoretical results concerning order of convergence and computational efficiency are verified in the numerical problems. Stability of the methods is tested by drawing basins of attraction in a two-dimensional polynomial system.

Suggested Citation

  • Sharma, Janak Raj & Sharma, Rajni & Kalra, Nitin, 2015. "A novel family of composite Newton–Traub methods for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 520-535.
  • Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:520-535
    DOI: 10.1016/j.amc.2015.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    2. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    3. Chun, Changbum & Neta, Beny, 2019. "Developing high order methods for the solution of systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 178-190.
    4. Abro, Hameer Akhtar & Shaikh, Muhammad Mujtaba, 2019. "A new time-efficient and convergent nonlinear solver," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 516-536.
    5. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    6. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    7. Beny Neta, 2021. "A Note on Traub’s Method for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 9(23), pages 1-8, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:520-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.