IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i3p1343-1351.html
   My bibliography  Save this article

Periodicity of a class of nonlinear fuzzy systems with delays

Author

Listed:
  • Yu, Jiali
  • Yi, Zhang
  • Zhang, Lei

Abstract

The well known Takagi–Sugeno (T–S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T–S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T–S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.

Suggested Citation

  • Yu, Jiali & Yi, Zhang & Zhang, Lei, 2009. "Periodicity of a class of nonlinear fuzzy systems with delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1343-1351.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1343-1351
    DOI: 10.1016/j.chaos.2007.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907007369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Yonghui & Cao, Jinde & Huang, Zhenkun, 2007. "Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1599-1607.
    2. Zhao, Hongyong & Ding, Nan, 2006. "Existence and global attractivity of positive periodic solution for competition-predator system with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 162-170.
    3. Liu, Bingwen & Huang, Lihong, 2007. "Existence and exponential stability of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 95-103.
    4. Wang, Hui & Liao, Xiaofeng & Li, Chuandong, 2007. "Existence and exponential stability of periodic solution of BAM neural networks with impulse and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1028-1039.
    5. He, Ji-Huan & Abdou, M.A., 2007. "New periodic solutions for nonlinear evolution equations using Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1421-1429.
    6. Liu, Haifei & Wang, Li, 2006. "Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1137-1141.
    7. Liu, Bingwen & Huang, Lihong, 2007. "Existence and stability of almost periodic solutions for shunting inhibitory cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 211-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    3. Sun, Yeong-Jeu, 2009. "Global exponential stability criterion for uncertain discrete-time cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2022-2024.
    4. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    5. Ninghua Chen, 2013. "Existence of Periodic Solutions for Shunting Inhibitory Cellular Neural Networks with Neutral Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, October.
    6. Huang, Zaitang & Yang, Qi-Gui, 2009. "Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 773-780.
    7. Xia, Yonghui & Wong, Patricia J.Y., 2009. "Global exponential stability of a class of retarded impulsive differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 440-453.
    8. Wang, Xiaohu & Xu, Daoyi, 2009. "Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2713-2721.
    9. Zhao, Weirui & Zhang, Huanshui, 2009. "New results of almost periodic solutions for cellular neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 831-838.
    10. Chen, Ling & Zhao, Hongyong, 2008. "Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 351-357.
    11. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    12. Zhao, Weirui, 2009. "On existence and global exponential stability of periodic solution of two-neuron networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1100-1105.
    13. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    14. Li, Yongkun, 2008. "Positive periodic solutions of periodic neutral Lotka–Volterra system with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 288-298.
    15. Chein-Shan Liu & Yung-Wei Chen, 2021. "A Simplified Lindstedt-Poincaré Method for Saving Computational Cost to Determine Higher Order Nonlinear Free Vibrations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    16. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    17. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    18. Chein-Shan Liu, 2021. "Linearized Homotopy Perturbation Method for Two Nonlinear Problems of Duffing Equations," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 13(6), pages 1-10, December.
    19. S. Ganji & A. Barari & L. Ibsen & G. Domairry, 2012. "Differential transform method for mathematical modeling of jamming transition problem in traffic congestion flow," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 87-100, March.
    20. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1343-1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.