IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3027-d688255.html
   My bibliography  Save this article

Experimental and Numerical Investigation on Thermal Damage of Granite Subjected to Heating and Cooling

Author

Listed:
  • Qiang Li

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Tubing Yin

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Xibing Li

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Ronghua Shu

    (School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
    Engineering Research Center for High-Efficiency Development and Application Technology of Tungsten Resources, Ministry of Education, Ganzhou 341000, China)

Abstract

Rock mass is frequently subjected to rapid cooling in geothermal reservoir during water injection and reinjection. In this paper, to understand the effects of cooling treatments on heated granite, heat conduction tests, magnetic resonance imaging tests and numerical investigations were carried out to evaluate variations of thermal damage. The test results reveal that the heat flux and the heat transfer coefficient increases to a maximum within a few seconds and then gradually decreases. The maximum heat transfer coefficient of the samples treated with the initial temperature of 500, 400, 300, 200 and 100 °C is 2.3, 2.15, 1.9, 1.22 and 1.86 W·m −2 K −1 , respectively. The edge area with drastic temperature changes is accompanied by the densely distributed microcracks; in contrast, the internal cracks of the specimen with gentle temperature are relatively sparse. The thermal damage contributed by the heating cracks occurs at a continuous decrease, and the thermal damage contributed by cooling occurs at a continuous increase, with the increasing heating temperature. The damage caused by heating is the result of the uneven thermal expansion of the local particles, the propagation of cooling cracks is strongly affected by heating cracks, and stress concentration induced by thermal shock promotes the coalescence of the pre-existing heating cracks.

Suggested Citation

  • Qiang Li & Tubing Yin & Xibing Li & Ronghua Shu, 2021. "Experimental and Numerical Investigation on Thermal Damage of Granite Subjected to Heating and Cooling," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3027-:d:688255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3027/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3027/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    2. Zhu, Zhennan & Ranjith, Pathegama Gamage & Tian, Hong & Jiang, Guosheng & Dou, Bin & Mei, Gang, 2021. "Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments," Renewable Energy, Elsevier, vol. 168(C), pages 375-392.
    3. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    4. Zhu, Zhennan & Kempka, Thomas & Ranjith, Pathegama Gamage & Tian, Hong & Jiang, Guosheng & Dou, Bin & Mei, Gang, 2021. "Changes in thermomechanical properties due to air and water cooling of hot dry granite rocks under unconfined compression," Renewable Energy, Elsevier, vol. 170(C), pages 562-573.
    5. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumen Paul & Somnath Chattopadhyaya & A. K. Raina & Shubham Sharma & Changhe Li & Yanbin Zhang & Amit Kumar & Elsayed Tag-Eldin, 2022. "A Review on the Impact of High-Temperature Treatment on the Physico-Mechanical, Dynamic, and Thermal Properties of Granite," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    2. A. V. Sedelnikov & D. I. Orlov & V. V. Serdakova & A. S. Nikolaeva, 2023. "Investigation of the Stress-Strain State of a Rectangular Plate after a Temperature Shock," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    3. Mohamed Elgharib Gomah & Guichen Li & Changlun Sun & Jiahui Xu & Sen Yang & Jinghua Li, 2022. "On the Physical and Mechanical Responses of Egyptian Granodiorite after High-Temperature Treatments," Sustainability, MDPI, vol. 14(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    2. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    3. Hu, Jianjun & Xie, Heping & Li, Cunbao & Liu, Guikang, 2024. "Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    6. Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
    7. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    8. Dai, Jiacheng & Li, Jingbin & Wang, Tianyu & Zhu, Liying & Tian, Kangjian & Chen, Zhaoting, 2023. "Thermal performance analysis of coaxial borehole heat exchanger using liquid ammonia," Energy, Elsevier, vol. 263(PE).
    9. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    10. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    11. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    12. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    13. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    14. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    15. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    16. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    17. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    18. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    19. Guo, Liang-Liang & Zhang, Yong-Bo & Wang, Zhi-Chao & Zeng, Jian & Zhang, Yan-Jun & Zhang, Zhi-Xiang, 2020. "Parameter sensitivity analysis and optimization strategy research of enhanced geothermal system: A case study in Guide Basin, Northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 813-831.
    20. Yin, Hebi & Sabau, Adrian S. & Conklin, James C. & McFarlane, Joanna & Qualls, A. Lou, 2013. "Mixtures of SF6–CO2 as working fluids for geothermal power plants," Applied Energy, Elsevier, vol. 106(C), pages 243-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3027-:d:688255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.