IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3504-d381373.html
   My bibliography  Save this article

Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems

Author

Listed:
  • Muhammad Haris

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Calusthal-Zellerfeld, Germany
    Department of Petroleum & Gas Engineering, University of Engineering & Technology, Lahore 54890, Pakistan)

  • Michael Z. Hou

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Calusthal-Zellerfeld, Germany)

  • Wentao Feng

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Calusthal-Zellerfeld, Germany)

  • Jiashun Luo

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Calusthal-Zellerfeld, Germany)

  • Muhammad Khurram Zahoor

    (Department of Petroleum & Gas Engineering, University of Engineering & Technology, Lahore 54890, Pakistan)

  • Jianxing Liao

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Calusthal-Zellerfeld, Germany)

Abstract

The meaningful utilization of artificially created multiple fractures in tight formations is associated with the performance behavior of such flow channels, especially in the case of thermal energy extraction from sedimentary geothermal system. In this study, an innovative idea is presented to develop a numerical model for geothermal energy production based on concrete physical performance of an artificially created tensile multi-fracture system in a simplified manner. The state-of-the-art software FLAC3D plus -TOUGH2MP-TMVOC are integrated to develop a coupled thermo-hydro-mechanical (THM) fictive model for constructing a multi-fracture scheme and estimating heat extraction performance. By incorporating the actual fracture width of newly created subsequent fracture under the effect of stress shadow, cubic law is implemented for fluid flow and geothermal energy production. The results depict that fracture spacing plays a vital role in the energy contribution through multiple fractures. Afterwards, a field case study to design huge multiple hydraulic fractures was performed in the geothermal well GB X1 in North Germany. The attenuation of fracture propagation becomes more significant when massive multiple fracturing operation is performed especially in the case of lower fracture spacing. The fictive model results will be extended to study the geothermal utilization of the North German basin through massive multiple fractures in our future work.

Suggested Citation

  • Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3504-:d:381373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Yu-chao & Zhan, Jie-min & Wu, Neng-you & Luo, Ying-ying & Cai, Wen-hao, 2016. "Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field," Energy, Elsevier, vol. 103(C), pages 290-304.
    2. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    3. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    4. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    5. Zhao, Yangsheng & Feng, Zijun & Feng, Zengchao & Yang, Dong & Liang, Weiguo, 2015. "THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M," Energy, Elsevier, vol. 82(C), pages 193-205.
    6. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    7. Mortensen, Jeannette J., 1978. "Hot dry rock: a new geothermal energy source," Energy, Elsevier, vol. 3(5), pages 639-644.
    8. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    9. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengmeng Hou & Jiashun Luo & Yachen Xie & Lin Wu & Liangchao Huang & Ying Xiong, 2022. "Carbon Circular Utilization and Partially Geological Sequestration: Potentialities, Challenges, and Trends," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Jiashun Luo & Zhengmeng Hou & Guoqing Feng & Jianxing Liao & Muhammad Haris & Ying Xiong, 2022. "Effect of Reservoir Heterogeneity on CO 2 Flooding in Tight Oil Reservoirs," Energies, MDPI, vol. 15(9), pages 1-21, April.
    3. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    4. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    5. Haris, Muhammad & Hou, Michael Z. & Feng, Wentao & Mehmood, Faisal & Saleem, Ammar bin, 2022. "A regenerative Enhanced Geothermal System for heat and electricity production as well as energy storage," Renewable Energy, Elsevier, vol. 197(C), pages 342-358.
    6. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    2. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    3. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    4. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    5. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    6. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    7. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    8. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    9. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    10. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    11. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    12. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    13. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    14. Zhixue Sun & Ying Xin & Jun Yao & Kai Zhang & Li Zhuang & Xuchen Zhu & Tong Wang & Chuanyin Jiang, 2018. "Numerical Investigation on the Heat Extraction Capacity of Dual Horizontal Wells in Enhanced Geothermal Systems Based on the 3-D THM Model," Energies, MDPI, vol. 11(2), pages 1-19, January.
    15. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    16. Asif Mehmood & Jun Yao & Dongyan Fan & Kelvin Bongole & Junrong Liu & Xu Zhang, 2019. "Potential for heat production by retrofitting abandoned gas wells into geothermal wells," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
    17. Tong Wang & Zhixue Sun & Kai Zhang & Chuanyin Jiang & Ying Xin & Qiangqiang Mao, 2018. "Investigation on Heat Extraction Performance of Fractured Geothermal Reservoir Using Coupled Thermal-Hydraulic-Mechanical Model Based on Equivalent Continuum Method," Energies, MDPI, vol. 12(1), pages 1-19, December.
    18. Liao, Youqiang & Sun, Xiaohui & Sun, Baojiang & Wang, Zhiyuan & Wang, Jintang & Wang, Xuerui, 2021. "Geothermal exploitation and electricity generation from multibranch U-shaped well–enhanced geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 2178-2189.
    19. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).
    20. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3504-:d:381373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.