IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipbs136403212300919x.html
   My bibliography  Save this article

Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development

Author

Listed:
  • Hu, Jianjun
  • Xie, Heping
  • Li, Cunbao
  • Liu, Guikang

Abstract

Using seawater as a heat transfer fluid for developing hot dry rock (HDR) geothermal energy in coastal areas is a frontier of engineering worth exploring; however, only a few studies have considered this research topic. During the development of HDR based on enhanced geothermal system (EGS) technology, the thermal shock fatigue effect of low-temperature seawater on high-temperature reservoirs leads to changes in the permeability of the HDR, notably impacting the reservoir reconstruction design and heat transfer efficiency. Accordingly, the changes in pore structure, pore distribution, porosity, and permeability of HDR in the Guangdong-Hong Kong-Macao Greater Bay Area were investigated based on nuclear magnetic resonance (NMR) techniques and fractal theory after treatment to different temperatures and numbers of thermal shocks due to seawater interaction. The experimental results showed that with an increase in temperature and the number of seawater interactions, the pore structure distribution of the HDR underwent significant changes, with the proportion of mesopores and macropores increasing by 24.29 % and 10.52 %, respectively. Moreover, the porosity and permeability increased with increasing temperature and number of thermal shock cycles, especially above 300 °C. When the temperature increased from 100 °C to 500 °C, the total porosity increased from 0.98 % to 3.85 %, an increase of 292.9 %, while the permeability increased from 10−4 mD to 0.1 mD, an increase of nearly 1000 times. Changes in the pore structure, pore distribution, porosity, and permeability of HDR are caused by multiple damage mechanisms related to high-temperature nonlinear expansion, thermal shock effects, chemical erosion, and fatigue. Additionally, the permeability of the HDR after seawater treatment at the same heat treatment temperature and number of thermal shocks was higher than that after freshwater treatment. At a temperature of approximately 500 °C and 20 thermal shocks, the permeability of HDR under the action of seawater was approximately seven times that of fresh water. Therefore, these results suggest that using seawater as a heat transfer fluid has more advantages in enhancing the permeability of reservoirs.

Suggested Citation

  • Hu, Jianjun & Xie, Heping & Li, Cunbao & Liu, Guikang, 2024. "Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s136403212300919x
    DOI: 10.1016/j.rser.2023.114061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300919X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    2. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    3. Nidal H. Abu-Hamdeh & Khaled Daqrouq & Fateh Mebarek-Oudina, 2021. "Simulation and Analysis with Wavelet Transform Technique and the Vibration Characteristics for Early Revealing of Cracks in Structures," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, February.
    4. Zhu, Zhennan & Ranjith, Pathegama Gamage & Tian, Hong & Jiang, Guosheng & Dou, Bin & Mei, Gang, 2021. "Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments," Renewable Energy, Elsevier, vol. 168(C), pages 375-392.
    5. Feng, Zijun & Zhao, Yangsheng & Zhou, Anchao & Zhang, Ning, 2012. "Development program of hot dry rock geothermal resource in the Yangbajing Basin of China," Renewable Energy, Elsevier, vol. 39(1), pages 490-495.
    6. Tomac, Ingrid & Sauter, Martin, 2018. "A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3972-3980.
    7. Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
    8. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    9. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    10. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    2. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    3. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    4. Qiang Li & Tubing Yin & Xibing Li & Ronghua Shu, 2021. "Experimental and Numerical Investigation on Thermal Damage of Granite Subjected to Heating and Cooling," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    5. Xia, Z.H. & Jia, G.S. & Ma, Z.D. & Wang, J.W. & Zhang, Y.P. & Jin, L.W., 2021. "Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments," Applied Energy, Elsevier, vol. 303(C).
    6. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    7. Zhou, Zhou & Jin, Yan & Zeng, Yijin & Zhang, Xudong & Zhou, Jian & Zhuang, Li & Xin, Shunyuan, 2020. "Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing," Renewable Energy, Elsevier, vol. 153(C), pages 301-313.
    8. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    9. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    10. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Ren, Yaqian & Kong, Yanlong & Pang, Zhonghe & Wang, Jiyang, 2023. "A comprehensive review of tracer tests in enhanced geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Guo, Tiankui & Hao, Tong & Chen, Ming & Zhang, Yuelong & Qu, Zhanqing & Jia, Xuliang & Zhang, Wei & Yu, Haiyang, 2023. "Numerical simulation on Geothermal extraction by radial well assisted hydraulic fracturing," Renewable Energy, Elsevier, vol. 210(C), pages 440-450.
    13. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    14. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    16. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    17. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    18. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    19. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    20. Shu, Biao & Chen, Junjie & Xue, Hui, 2024. "Experimental study of the change of pore structure and strength of granite after fluid-rock interaction in CO2-EGS," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s136403212300919x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.