IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2909-d679773.html
   My bibliography  Save this article

The Rescaled Pólya Urn and the Wright—Fisher Process with Mutation

Author

Listed:
  • Giacomo Aletti

    (Environmental Science and Policy Department, Università degli Studi di Milano, 20133 Milan, Italy
    These authors contributed equally to this work.)

  • Irene Crimaldi

    (IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
    These authors contributed equally to this work.)

Abstract

In recent papers the authors introduce, study and apply a variant of the Eggenberger—Pólya urn, called the “rescaled” Pólya urn, which, for a suitable choice of the model parameters, exhibits a reinforcement mechanism mainly based on the last observations, a random persistent fluctuation of the predictive mean and the almost sure convergence of the empirical mean to a deterministic limit. In this work, motivated by some empirical evidence, we show that the multidimensional Wright—Fisher diffusion with mutation can be obtained as a suitable limit of the predictive means associated to a family of rescaled Pólya urns.

Suggested Citation

  • Giacomo Aletti & Irene Crimaldi, 2021. "The Rescaled Pólya Urn and the Wright—Fisher Process with Mutation," Mathematics, MDPI, vol. 9(22), pages 1-11, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2909-:d:679773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giacomo Aletti & Irene Crimaldi & Fabio Saracco, 2021. "A model for the Twitter sentiment curve," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-28, April.
    2. Gourieroux, Christian & Jasiak, Joann, 2006. "Multivariate Jacobi process with application to smooth transitions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 475-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    2. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    3. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    4. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    5. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    6. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    7. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    8. Mar'ia Fernanda del Carmen Agoitia Hurtado & Thorsten Schmidt, 2018. "Time-inhomogeneous polynomial processes," Papers 1806.03887, arXiv.org.
    9. Ardian, Aldin & Kumral, Mustafa, 2020. "Incorporating stochastic correlations into mining project evaluation using the Jacobi process," Resources Policy, Elsevier, vol. 65(C).
    10. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    11. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    12. Cuchiero, Christa, 2019. "Polynomial processes in stochastic portfolio theory," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1829-1872.
    13. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01138383, HAL.
    14. Nicolas Bouleau & Christophe Chorro, 2015. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Documents de travail du Centre d'Economie de la Sorbonne 15024r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2015.
    15. Ahdida, Abdelkoddousse & Alfonsi, Aurélien, 2013. "A mean-reverting SDE on correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1472-1520.
    16. Nicolas Bouleau & Christophe Chorro, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process," Post-Print hal-01138383, HAL.
    17. Damien Ackerer & Damir Filipovi'c, 2016. "Linear Credit Risk Models," Papers 1605.07419, arXiv.org, revised Jul 2019.
    18. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2011. "A Mean-Reverting SDE on Correlation matrices," Papers 1108.5264, arXiv.org, revised Feb 2012.
    19. David Itkin & Martin Larsson, 2021. "Open Markets and Hybrid Jacobi Processes," Papers 2110.14046, arXiv.org, revised Mar 2024.
    20. Bouleau, Nicolas & Chorro, Christophe, 2017. "The impact of randomness on the distribution of wealth: Some economic aspects of the Wright–Fisher diffusion process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 379-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2909-:d:679773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.