Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kim, Younoh & Knowles, Scott & Manley, James & Radoias, Vlad, 2017.
"Long-run health consequences of air pollution: Evidence from Indonesia's forest fires of 1997,"
Economics & Human Biology, Elsevier, vol. 26(C), pages 186-198.
- Younoh Kim & Scott Knowles & James Manley & Vlad Radoias, 2016. "Long-Run Health Consequences of Air Pollution: Evidence from Indonesia's Forest Fires of 1997," Working Papers 2016-11, Towson University, Department of Economics, revised May 2016.
- Younoh Kim & Vlad Radoias, 2022. "Severe Air Pollution Exposure and Long-Term Health Outcomes," IJERPH, MDPI, vol. 19(21), pages 1-8, October.
- Nick Guenther & Matthias Schonlau, 2016. "Support vector machines," Stata Journal, StataCorp LP, vol. 16(4), pages 917-937, December.
- Karatzoglou, Alexandros & Meyer, David & Hornik, Kurt, 2006. "Support Vector Machines in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i09).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elizabeth C. Heintz & Derek P. Scott & Kolby R. Simms & Jeremy J. Foreman, 2022. "Air Quality Is Predictive of Mistakes in Professional Baseball and American Football," IJERPH, MDPI, vol. 20(1), pages 1-11, December.
- Singh, Damini & Gupta, Indrani & Roy, Arjun, 2023. "The association of asthma and air pollution: Evidence from India," Economics & Human Biology, Elsevier, vol. 51(C).
- Li, Zhengtao & Hu, Bin, 2018. "Perceived health risk, environmental knowledge, and contingent valuation for improving air quality: New evidence from the Jinchuan mining area in China," Economics & Human Biology, Elsevier, vol. 31(C), pages 54-68.
- Paolo Sorino & Maria Gabriella Caruso & Giovanni Misciagna & Caterina Bonfiglio & Angelo Campanella & Antonella Mirizzi & Isabella Franco & Antonella Bianco & Claudia Buongiorno & Rosalba Liuzzi & Ann, 2020. "Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
- Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
- Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
- Chris Reimann, 2024. "Predicting financial crises: an evaluation of machine learning algorithms and model explainability for early warning systems," Review of Evolutionary Political Economy, Springer, vol. 5(1), pages 51-83, June.
- Thi Phuoc Lai Nguyen & Salvatore G. P. Virdis & Ekbordin Winjikul, 2022. "Inequality of Low Air Quality-Related Health Impacts among Socioeconomic Groups in the World of Work," IJERPH, MDPI, vol. 19(19), pages 1-12, October.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
- McKenzie, David & Sansone, Dario, 2017.
"Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria,"
CEPR Discussion Papers
12523, C.E.P.R. Discussion Papers.
- Mckenzie,David J. & Sansone,Dario & Mckenzie,David J. & Sansone,Dario, 2017. "Man vs. machine in predicting successful entrepreneurs : evidence from a business plan competition in Nigeria," Policy Research Working Paper Series 8271, The World Bank.
- Phichhang Ou & Hengshan Wang, 2009. "Prediction of Stock Market Index Movement by Ten Data Mining Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 3(12), pages 1-28, December.
- Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
- Luca Longo, 2018. "Experienced mental workload, perception of usability, their interaction and impact on task performance," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-36, August.
- Vítor João Pereira Domingues Martinho, 2019. "Socioeconomic Impacts of Forest Fires upon Portugal: An Analysis for the Agricultural and Forestry Sectors," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
- Courage Kamusoko & Jonah Gamba & Hitomi Murakami, 2014. "Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers," Land, MDPI, vol. 3(2), pages 1-17, June.
- Roberson Andrea, 2021. "Applying Machine Learning for Automatic Product Categorization," Journal of Official Statistics, Sciendo, vol. 37(2), pages 395-410, June.
- Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P. & Botsaris, Pantelis N., 2024. "A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece," Renewable Energy, Elsevier, vol. 221(C).
- Perthame, Emeline & Forbes, Florence & Deleforge, Antoine, 2018. "Inverse regression approach to robust nonlinear high-to-low dimensional mapping," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 1-14.
- Jindřich Špička, 2018. "How Do Agricultural Biogas Investments Affect Czech Farms?," Central European Business Review, Prague University of Economics and Business, vol. 2018(4), pages 34-60.
More about this item
Keywords
tuberculosis; machine learning; forecasting; neural networks; random forest regression; support vector regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:3910-:d:1076934. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.