IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2760-d668640.html
   My bibliography  Save this article

Solving Schrödinger–Hirota Equation in a Stochastic Environment and Utilizing Generalized Derivatives of the Conformable Type

Author

Listed:
  • Abd-Allah Hyder

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
    Department of Engineering Mathematics and Physics, Faculty of Engineering, Al-Azhar University, Cairo 11371, Egypt)

  • Ahmed H. Soliman

    (Department of Mathematics, Faculty of Sciences, Al-Azhar University, Assiut 71524, Egypt)

  • Clemente Cesarano

    (Section of Mathematics, Università Telematica Internazionale Uninettuno, 00186 Rome, Italy)

  • M. A. Barakat

    (Department of Mathematics, Faculty of Sciences, Al-Azhar University, Assiut 71524, Egypt
    Department of Computer Science, College of Al Wajh, University of Tabuk, Tabuk 71491, Saudi Arabia)

Abstract

This work is devoted to providing new kinds of deterministic and stochastic solutions of one of the famous nonlinear equations that depends on time, called the Schrödinger–Hirota equation. A new and straightforward methodology is offered to extract exact wave solutions of the stochastic nonlinear evolution equations (NEEs) with generalized differential conformable operators (GDCOs). This methodology combines the features of GDCOs, some instruments of white noise analysis, and the generalized Kudryashov scheme. To demonstrate the usefulness and validity of our methodology, we applied it to extract diversified exact wave solutions of the Schrödinger–Hirota equation, particularly in a Wick-type stochastic space and with GDCOs. These wave solutions can be turned into soliton and periodic wave solutions that play a main role in numerous fields of nonlinear physical sciences. Moreover, three-dimensional, contour, and two-dimensional graphical visualizations of some of the extracted solutions are exhibited with some elected functions and parameters. According to the results, our new approach demonstrates the impact of random and conformable factors on the solutions of the Schrödinger–Hirota equation. These findings can be applied to build new models in plasma physics, condensed matter physics, industrial studies, and optical fibers. Furthermore, to reinforce the importance of the acquired solutions, comparative aspects connected to some former works are presented for these types of solutions.

Suggested Citation

  • Abd-Allah Hyder & Ahmed H. Soliman & Clemente Cesarano & M. A. Barakat, 2021. "Solving Schrödinger–Hirota Equation in a Stochastic Environment and Utilizing Generalized Derivatives of the Conformable Type," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2760-:d:668640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Dazhi & Pan, Xueqin & Luo, Maokang, 2018. "A new framework for multivariate general conformable fractional calculus and potential applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 271-280.
    2. Atangana, Abdon & Khan, Muhammad Altaf, 2019. "Validity of fractal derivative to capturing chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 50-59.
    3. Seadawy, Aly R. & Iqbal, Mujahid & Lu, Dianchen, 2020. "Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    4. Saha Ray, S., 2020. "Dispersive optical solitons of time-fractional Schrödinger–Hirota equation in nonlinear optical fibers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Ulutas, Esma, 2021. "Travelling wave and optical soliton solutions of the Wick-type stochastic NLSE with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Zhao, Dazhi & Yu, Guozhu & Tian, Yan, 2020. "Recursive formulae for the analytic solution of the nonlinear spatial conformable fractional evolution equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    5. Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    6. Qi, Jianming & Cui, Qinghua & Bai, Leiqiang & Sun, Yiqun, 2024. "Investigating exact solutions, sensitivity, and chaotic behavior of multi-fractional order stochastic Davey–Sewartson equations for hydrodynamics research applications," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Yang, Yang & Wang, Xiuqin, 2022. "A novel modified conformable fractional grey time-delay model for power generation prediction," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    8. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Altun, Ishak & Sahin, Hakan & Aslantas, Mustafa, 2021. "A new approach to fractals via best proximity point," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Zhang, Xin & Shi, Ran, 2022. "Novel fast fixed-time sliding mode trajectory tracking control for manipulator," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Vázquez-Guerrero, P. & Gómez-Aguilar, J.F. & Santamaria, F. & Escobar-Jiménez, R.F., 2019. "Synchronization patterns with strong memory adaptive control in networks of coupled neurons with chimera states dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 167-175.
    13. Marwan Alquran & Imad Jaradat, 2023. "Identifying Combination of Dark–Bright Binary–Soliton and Binary–Periodic Waves for a New Two-Mode Model Derived from the (2 + 1)-Dimensional Nizhnik–Novikov–Veselov Equation," Mathematics, MDPI, vol. 11(4), pages 1-9, February.
    14. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Siddique, Imran & Akgül, Ali, 2020. "Analysis of MHD generalized first problem of Stokes’ in view of local and non-local fractal fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Xiao, Guanli & Wang, JinRong & O’Regan, Donal, 2020. "Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. He, Xue-Jiao & Lü, Xing, 2022. "M-lump solution, soliton solution and rational solution to a (3+1)-dimensional nonlinear model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 327-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2760-:d:668640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.