IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920306652.html
   My bibliography  Save this article

Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations

Author

Listed:
  • Xiao, Guanli
  • Wang, JinRong
  • O’Regan, Donal

Abstract

In this paper, we study conformable stochastic differential equations. Firstly, the Itô formula is established and used to discuss the explicit expression of solutions of linear differential equations. Secondly, the existence and uniqueness of solutions of nonlinear conformable stochastic differential equations are proved by the Picard iteration method, and the continuous dependence of solutions on initial values is proved by the Gronwall inequality, the exponential estimation of solutions is also given. Finally, some examples are given to illustrate the theoretically results and we compare the simulation results for the conformable stock model with different ρ.

Suggested Citation

  • Xiao, Guanli & Wang, JinRong & O’Regan, Donal, 2020. "Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306652
    DOI: 10.1016/j.chaos.2020.110269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dazhi & Pan, Xueqin & Luo, Maokang, 2018. "A new framework for multivariate general conformable fractional calculus and potential applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 271-280.
    2. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    3. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    4. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "A Study of Some Generalized Results of Neutral Stochastic Differential Equations in the Framework of Caputo–Katugampola Fractional Derivatives," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    2. Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    2. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    3. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    4. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    5. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    6. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    7. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    8. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    9. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    10. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    11. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    12. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    13. Li, Hanwu & Peng, Shige, 2020. "Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6556-6579.
    14. Guomin Liu, 2021. "Girsanov Theorem for G-Brownian Motion: The Degenerate Case," Journal of Theoretical Probability, Springer, vol. 34(1), pages 125-140, March.
    15. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    16. Li, Hanwu, 2019. "Optimal stopping under $\textit{G}$-expectation," Center for Mathematical Economics Working Papers 606, Center for Mathematical Economics, Bielefeld University.
    17. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    18. Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
    19. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    20. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.