IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1361-d573821.html
   My bibliography  Save this article

Series in Le Roy Type Functions: A Set of Results in the Complex Plane—A Survey

Author

Listed:
  • Jordanka Paneva-Konovska

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)

Abstract

This study is based on a part of the results obtained in the author’s publications. An enumerable family of the Le Roy type functions is considered herein. The asymptotic formula for these special functions in the cases of ‘large’ values of indices, that has been previously obtained, is provided. Further, series defined by means of the Le Roy type functions are considered. These series are studied in the complex plane. Their domains of convergence are given and their behaviour is investigated ‘near’ the boundaries of the domains of convergence. The discussed asymptotic formula is used in the proofs of the convergence theorems for the considered series. A theorem of the Cauchy–Hadamard type is provided. Results of Abel, Tauber and Littlewood type, which are analogues to the corresponding theorems for the classical power series, are also proved. At last, various interesting particular cases of the discussed special functions are considered.

Suggested Citation

  • Jordanka Paneva-Konovska, 2021. "Series in Le Roy Type Functions: A Set of Results in the Complex Plane—A Survey," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1361-:d:573821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergei Rogosin, 2015. "The Role of the Mittag-Leffler Function in Fractional Modeling," Mathematics, MDPI, vol. 3(2), pages 1-14, May.
    2. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordanka Paneva-Konovska, 2023. "Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae," Mathematics, MDPI, vol. 11(17), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    2. Jordanka Paneva-Konovska, 2022. "Taylor Series for the Mittag–Leffler Functions and Their Multi-Index Analogues," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    3. Jordanka Paneva-Konovska, 2023. "Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae," Mathematics, MDPI, vol. 11(17), pages 1-13, September.
    4. Jordanka Paneva-Konovska & Virginia Kiryakova, 2024. "The Generalized Fox–Wright Function: The Laplace Transform, the Erdélyi–Kober Fractional Integral and Its Role in Fractional Calculus," Mathematics, MDPI, vol. 12(12), pages 1-25, June.
    5. Virginia Kiryakova, 2021. "A Guide to Special Functions in Fractional Calculus," Mathematics, MDPI, vol. 9(1), pages 1-40, January.
    6. Virginia Kiryakova, 2020. "Unified Approach to Fractional Calculus Images of Special Functions—A Survey," Mathematics, MDPI, vol. 8(12), pages 1-35, December.
    7. Asifa Tassaddiq & Rekha Srivastava, 2023. "New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    8. El Anouz, K. & El Allati, A. & Metwally, N. & Obada, A.S., 2023. "The efficiency of fractional channels in the Heisenberg XYZ model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Meysam Alvan & Rahmat Darzi & Amin Mahmoodi, 2016. "Existence Results for a New Class of Boundary Value Problems of Nonlinear Fractional Differential Equations," Mathematics, MDPI, vol. 4(1), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1361-:d:573821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.