IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i18p5640-5659.html
   My bibliography  Save this article

A branch-and-bound method for the bi-objective simple line assembly balancing problem

Author

Listed:
  • Audrey Cerqueus
  • Xavier Delorme

Abstract

The design of a production system is a strategic level decision. One of the key problems to solve is the line balancing problem that determines the efficiency of a production or assembly line. This class of problem has been widely studied in the literature. It determines important features, such as the number of stations, the takt time or the working conditions. Most of the variants of this problem consider only one objective function, but nowadays companies have to take into account different criteria. In this study, we consider a bi-objective variant of the simple assembly line balancing problem. We present a generic branch-and-bound method to solve exactly this problem. The objective functions are to minimise the takt time and the number of stations. To do so, bounds and bound sets are developed. The resulting method is numerically tested and compared to an ϵ-constraint method. These experiments show that the bi-objective branch-and-bound algorithm outperforms an ϵ-constraint method using a state-of-the-art single objective algorithm for more than 80% of the instances. Finally, we propose an analysis of the cases where the branch-and-bound method is outperformed.

Suggested Citation

  • Audrey Cerqueus & Xavier Delorme, 2019. "A branch-and-bound method for the bi-objective simple line assembly balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(18), pages 5640-5659, September.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:18:p:5640-5659
    DOI: 10.1080/00207543.2018.1539266
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1539266
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1539266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohd Nor Akmal Khalid & Umi Kalsom Yusof, 2021. "Incorporating shifting bottleneck identification in assembly line balancing problem using an artificial immune system approach," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 717-749, September.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:18:p:5640-5659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.