IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i3p846-862.html
   My bibliography  Save this article

Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time

Author

Listed:
  • Yilin Fang
  • Hao Ming
  • Miqing Li
  • Quan Liu
  • Duc Truong Pham

Abstract

This paper considers the design and balancing of mixed-model disassembly lines with multi-robotic workstations under uncertainty. Tasks of different models are performed simultaneously by the robots which have different capacities for disassembly. The robots have unidentical task times and energy consumption respectively. Task precedence diagrams are used to model the precedence relations among tasks. Considering uncertainties in disassembly process, the task processing times are assumed to be interval numbers. A mixed-integer mathematical programming model is proposed to minimise the cycle time, peak workstation energy consumption, and total energy consumption. This model has a significant managerial implication in real-life disassembly line systems. Since the studied problem is known as NP-hard, a metaheuristic approach based on an evolutionary simulated annealing algorithm is developed. Computational experiments are conducted and the results demonstrate the proposed algorithm outperforms other multi-objective algorithms on optimisation quality and computational efficiency.

Suggested Citation

  • Yilin Fang & Hao Ming & Miqing Li & Quan Liu & Duc Truong Pham, 2020. "Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 846-862, February.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:3:p:846-862
    DOI: 10.1080/00207543.2019.1602290
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1602290
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1602290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    2. Kaibo Liang & Li Zhou & Jianglong Yang & Huwei Liu & Yakun Li & Fengmei Jing & Man Shan & Jin Yang, 2023. "Research on a Dynamic Task Update Assignment Strategy Based on a “Parts to Picker” Picking System," Mathematics, MDPI, vol. 11(7), pages 1-29, March.
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    5. Yicong Gao & Shanhe Lou & Hao Zheng & Jianrong Tan, 2023. "A data-driven method of selective disassembly planning at end-of-life under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 565-585, February.
    6. Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:3:p:846-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.