IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1862-d609333.html
   My bibliography  Save this article

Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results

Author

Listed:
  • Konstantin E. Starkov

    (Instituto Politecnico Nacional-CITEDI, Av. de IPN 1310, Nueva Tijuana, Tijuana 22435, Mexico
    These authors contributed equally to this work.)

  • Anatoly N. Kanatnikov

    (Department of Mathematical Modeling, Bauman Moscow State Technical University, 105005 Moscow, Russia
    These authors contributed equally to this work.)

Abstract

In this paper, we study possibilities of eradication of populations at an early stage of a patient’s infection in the framework of the seven-order Stengel model with 11 model parameters and four treatment parameters describing the interactions of wild-type and mutant HIV particles with various immune cells. We compute ultimate upper bounds for all model variables that define a polytope containing the attracting set. The theoretical possibility of eradicating HIV-infected populations has been investigated in the case of a therapy aimed only at eliminating wild-type HIV particles. Eradication conditions are expressed via algebraic inequalities imposed on parameters. Under these conditions, the concentrations of wild-type HIV particles, mutant HIV particles, and infected cells asymptotically tend to zero with increasing time. Our study covers the scope of acceptable therapies with constant concentrations and values of model parameters where eradication of infected particles/cells populations is observed. Sets of parameter values for which Stengel performed his research do not satisfy our local asymptotic stability conditions. Therefore, our exploration develops the Stengel results where he investigated using the optimal control theory and numerical dynamics of his model and came to a negative health prognosis for a patient. The biological interpretation of these results is that after a sufficiently long time, the concentrations of wild-type and mutant HIV particles, as well as infected cells will be maintained at a sufficiently low level, which means that the viral load and the concentration of infected cells will be minimized. Thus, our study theoretically confirms the possibility of efficient treatment beginning at the earliest stage of infection. Our approach is based on a combination of the localization method of compact invariant sets and the LaSalle theorem.

Suggested Citation

  • Konstantin E. Starkov & Anatoly N. Kanatnikov, 2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1862-:d:609333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiying & Liu, Xinzhi & Xie, Wei-chau & Xu, Wei & Xu, Yong, 2016. "Global stability and persistence of HIV models with switching parameters and pulse control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 123(C), pages 53-67.
    2. Dehghan, Mehdi & Nasri, Mostafa & Razvan, Mohammad Reza, 2007. "Global stability of a deterministic model for HIV infection in vivo," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1225-1238.
    3. Hattaf, Khalid & Dutta, Hemen, 2020. "Modeling the dynamics of viral infections in presence of latently infected cells," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Monalisa & Danumjaya, P. & Rao, P. Raja Sekhara, 2023. "A nonlinear mathematical model on the Covid-19 transmission pattern among diabetic and non-diabetic population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 346-369.
    2. Brugnago, Eduardo L. & da Silva, Rafael M. & Manchein, Cesar & Beims, Marcus W., 2020. "How relevant is the decision of containment measures against COVID-19 applied ahead of time?," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Cai, Liming & Li, Xuezhi, 2009. "Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 1-11.
    5. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    6. Rao, Feng & Luo, Junling, 2021. "Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.
    8. Jiang, Xiaowu & Zhou, Xueyong & Shi, Xiangyun & Song, Xinyu, 2008. "Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 447-460.
    9. AlShamrani, N.H., 2021. "Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Cai, Liming & Wu, Jingang, 2009. "Analysis of an HIV/AIDS treatment model with a nonlinear incidence," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 175-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1862-:d:609333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.