IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v123y2016icp53-67.html
   My bibliography  Save this article

Global stability and persistence of HIV models with switching parameters and pulse control

Author

Listed:
  • Wang, Xiying
  • Liu, Xinzhi
  • Xie, Wei-chau
  • Xu, Wei
  • Xu, Yong

Abstract

This paper studies some HIV (Human Immunodeficiency Virus) models with switching parameters and pulse control. By taking into account of the effects of reverse transcriptase inhibitor (RTI) drugs, protease inhibitor (PI) drugs and the variable transmission rate, we propose a new HIV model with switching parameters and derive a general threshold value that measures the persistence of the disease. Furthermore, pulse vaccination is applied to the HIV model and some novel threshold conditions are established to ensure the existence and stability of the periodic infection-free solution. In contrast to the standard HIV models, it is shown that our proposed models are more practical and useful. Moreover, pulse vaccination strategies are proven to be more effective in determining whether or not the disease is eradicated. Numerical simulations are carried out to illustrate the effectiveness of the obtained results, and future research directions are suggested.

Suggested Citation

  • Wang, Xiying & Liu, Xinzhi & Xie, Wei-chau & Xu, Wei & Xu, Yong, 2016. "Global stability and persistence of HIV models with switching parameters and pulse control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 123(C), pages 53-67.
  • Handle: RePEc:eee:matcom:v:123:y:2016:i:c:p:53-67
    DOI: 10.1016/j.matcom.2015.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416000021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Ting & Wang, Wendi & Liu, Xianning, 2011. "Mathematical analysis of an HIV model with impulsive antiretroviral drug doses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 653-665.
    2. Huang, Zaitang & Yang, Qigui & Cao, Junfei, 2011. "Complex dynamics in a stochastic internal HIV model," Chaos, Solitons & Fractals, Elsevier, vol. 44(11), pages 954-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin E. Starkov & Anatoly N. Kanatnikov, 2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results," Mathematics, MDPI, vol. 9(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Dubey, Preeti & Dubey, Uma S. & Dubey, Balram, 2018. "Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 120-137.
    3. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    4. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    5. J. A. Tenreiro Machado, 2020. "An Evolutionary Perspective of Virus Propagation," Mathematics, MDPI, vol. 8(5), pages 1-22, May.
    6. Rathinasamy, A. & Chinnadurai, M. & Athithan, S., 2021. "Analysis of exact solution of stochastic sex-structured HIV/AIDS epidemic model with effect of screening of infectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 213-237.
    7. Qesmi, Redouane & Hammoumi, Aayah, 2020. "A stochastic delay model of HIV pathogenesis with reactivation of latent reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    8. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    10. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    11. Li, Qiuyue & Cong, Fuzhong & Liu, Tianbao & Zhou, Yaoming, 2020. "Stationary distribution of a stochastic HIV model with two infective stages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:123:y:2016:i:c:p:53-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.