Modeling the dynamics of viral infections in presence of latently infected cells
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.109916
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khalid Hattaf & Noura Yousfi, 2018. "Qualitative Analysis of a Generalized Virus Dynamics Model with Both Modes of Transmission and Distributed Delays," International Journal of Differential Equations, Hindawi, vol. 2018, pages 1-7, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- AlShamrani, N.H., 2021. "Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Rao, Feng & Luo, Junling, 2021. "Stochastic effects on an HIV/AIDS infection model with incomplete diagnosis," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Anand, Monalisa & Danumjaya, P. & Rao, P. Raja Sekhara, 2023. "A nonlinear mathematical model on the Covid-19 transmission pattern among diabetic and non-diabetic population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 346-369.
- Brugnago, Eduardo L. & da Silva, Rafael M. & Manchein, Cesar & Beims, Marcus W., 2020. "How relevant is the decision of containment measures against COVID-19 applied ahead of time?," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Konstantin E. Starkov & Anatoly N. Kanatnikov, 2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
- Günerhan, Hatıra & Dutta, Hemen & Dokuyucu, Mustafa Ali & Adel, Waleed, 2020. "Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hattaf, Khalid, 2020. "Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
More about this item
Keywords
Viral infection; Latently infected cells; Mathematical modeling; Asymptotic stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920303167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.