IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i3p269-280.html
   My bibliography  Save this article

Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing

Author

Listed:
  • Jong†Min Kim
  • Hojin Jung

Abstract

We propose a method for improving the predictive ability of standard forecasting models used in financial economics. Our approach is based on the functional partial least squares (FPLS) model, which is capable of avoiding multicollinearity in regression by efficiently extracting information from the high†dimensional market data. By using its well†known ability, we can incorporate auxiliary variables that improve the predictive accuracy. We provide an empirical application of our proposed methodology in terms of its ability to predict the conditional average log return and the volatility of crude oil prices via exponential smoothing, Bayesian stochastic volatility, and GARCH (generalized autoregressive conditional heteroskedasticity) models, respectively. In particular, what we call functional data analysis (FDA) traces in this article are obtained via the FPLS regression from both the crude oil returns and auxiliary variables of the exchange rates of major currencies. For forecast performance evaluation, we compare out†of†sample forecasting accuracy of the standard models with FDA traces to the accuracy of the same forecasting models with the observed crude oil returns, principal component regression (PCR), and least absolute shrinkage and selection operator (LASSO) models. We find evidence that the standard models with FDA traces significantly outperform our competing models. Finally, they are also compared with the test for superior predictive ability and the reality check for data snooping. Our empirical results show that our new methodology significantly improves predictive ability of standard models in forecasting the latent average log return and the volatility of financial time series.

Suggested Citation

  • Jong†Min Kim & Hojin Jung, 2018. "Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 269-280, April.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:269-280
    DOI: 10.1002/for.2498
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2498
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    2. Cheung, Yin-Wong & Wang, Wenhao, 2022. "Uncovered interest rate parity redux: Non-uniform effects," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.
    3. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    4. Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).
    5. Jong-Min Kim & Chulhee Jun & Junyoup Lee, 2021. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility," Mathematics, MDPI, vol. 9(14), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:3:p:269-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.