Cryptocurrency price and volatility predictions with machine learning
Author
Abstract
Suggested Citation
DOI: 10.1057/s41270-023-00239-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
- Taku Moriyama & Masashi Kuwano, 2022. "Causal inference for contemporaneous effects and its application to tourism product sales data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 250-260, September.
- Junzhou Zhang & Lei Huang, 2018. "Loss or gain? The impact of Chinese local celebrity endorser scandal on the global market value of the endorsed brands," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(1), pages 27-39, March.
- Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
- Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
- Maria Petrescu & John Gironda, 2019. "Interpris: intuitive qualitative data analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(4), pages 251-252, December.
- Maria Petrescu & Anjala S. Krishen, 2020. "The dilemma of social media algorithms and analytics," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 187-188, December.
- Jong-Min Kim & Chulhee Jun & Junyoup Lee, 2021. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Anjali Singh & Ajay Kumar, 2021. "Designing the marketspace for millennials: fun, functionality or risk?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(4), pages 311-327, December.
- Viviane Naimy & Omar Haddad & Gema Fernández-Avilés & Rim El Khoury, 2021. "The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
- Shivaji Alaparthi & Manit Mishra, 2021. "BERT: a sentiment analysis odyssey," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 118-126, June.
- Jeffrey A. Hoyle & Rebecca Dingus & J. Holton Wilson, 2020. "An exploration of sales forecasting: sales manager and salesperson perspectives," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(3), pages 127-136, September.
- Maria Petrescu & Anjala S. Krishen, 2020. "The importance of high-quality data and analytics during the pandemic," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(2), pages 43-44, June.
- Souheila Kaabachi & Selima Ben Mrad & Tais Barreto, 2022. "Reshaping the bank experience for GEN Z in France," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 219-231, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yousaf, Imran & Yarovaya, Larisa, 2022. "Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets," Finance Research Letters, Elsevier, vol. 50(C).
- Wu, Zewen, 2024. "Are we in a bubble? Financial vulnerabilities in semiconductor, Web3, and genetic engineering markets," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 32-44.
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2023. "Multivariate dynamics between emerging markets and digital asset markets: An application of the SNP-DCC model," Emerging Markets Review, Elsevier, vol. 56(C).
- Wang, Yizhi & Wei, Yu & Lucey, Brian M. & Su, Yang, 2023. "Return spillover analysis across central bank digital currency attention and cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 64(C).
- Maria Petrescu & Anjala S. Krishen, 2023. "Mapping 2022 in Journal of Marketing Analytics: what lies ahead?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(1), pages 1-4, March.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Abdullah, Mohammad & Lee, Chi-Chuan & Sulong, Zunaidah, 2024. "Correlation structure between fiat currencies and blockchain assets," Finance Research Letters, Elsevier, vol. 62(PA).
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Chowdhury, Reaz & Rahman, M. Arifur & Rahman, M. Sohel & Mahdy, M.R.C., 2020. "An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Wesley Marcos Almeida & Claudimar Pereira Veiga, 2023. "Does demand forecasting matter to retailing?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 219-232, June.
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Viktor Manahov, 2024. "The rapid growth of cryptocurrencies: How profitable is trading in digital money?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2214-2229, April.
- Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
- Daesik Kim & Chung Joo Chung & Kihong Eom, 2022. "Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
- Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
- Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
- Akdoğu, Evrim & Simsir, Serif Aziz, 2023. "Are blockchain and cryptocurrency M&As harder to close?," Finance Research Letters, Elsevier, vol. 52(C).
- Zhong, Yufei & Chen, Xuesheng & Wang, Chengfang & Wang, Zhixian & Zhang, Yuchen, 2023. "The hedging performance of green bond markets in China and the U.S.: Novel evidence from cryptocurrency uncertainty," Energy Economics, Elsevier, vol. 128(C).
- Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
More about this item
Keywords
Cryptocurrency; Neural Networks; Price prediction; High performance computing; Machine learning; Linear regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:11:y:2023:i:4:d:10.1057_s41270-023-00239-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.