IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i10p1099-d553756.html
   My bibliography  Save this article

Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming

Author

Listed:
  • Lakshman S. Thakur

    (Department of Operations and Information Management, School of Business, University of Connecticut, Storrs, CT 06269, USA)

  • Mikhail A. Bragin

    (Department of Electrical and Computer Engineering, School of Engineering, University of Connecticut, Storrs, CT 06269, USA)

Abstract

The problem of obtaining an optimal spline with free knots is tantamount to minimizing derivatives of a nonlinear differentiable function over a Banach space on a compact set. While the problem of data interpolation by quadratic splines has been accomplished, interpolation by splines of higher orders is far more challenging. In this paper, to overcome difficulties associated with the complexity of the interpolation problem, the interval over which data points are defined is discretized and continuous derivatives are replaced by their discrete counterparts. The l ∞ -norm used for maximum r th order curvature (a derivative of order r ) is then linearized, and the problem to obtain a near-optimal spline becomes a linear programming (LP) problem, which is solved in polynomial time by using LP methods, e.g., by using the Simplex method implemented in modern software such as CPLEX. It is shown that, as the mesh of the discretization approaches zero, a resulting near-optimal spline approaches an optimal spline. Splines with the desired accuracy can be obtained by choosing an appropriately fine mesh of the discretization. By using cubic splines as an example, numerical results demonstrate that the linear programming (LP) formulation, resulting from the discretization of the interpolation problem, can be solved by linear solvers with high computational efficiency and the resulting spline provides a good approximation to the sought-for optimal spline.

Suggested Citation

  • Lakshman S. Thakur & Mikhail A. Bragin, 2021. "Data Interpolation by Near-Optimal Splines with Free Knots Using Linear Programming," Mathematics, MDPI, vol. 9(10), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1099-:d:553756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/10/1099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/10/1099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farid Alizadeh & Jonathan Eckstein & Nilay Noyan & Gábor Rudolf, 2008. "Arrival Rate Approximation by Nonnegative Cubic Splines," Operations Research, INFORMS, vol. 56(1), pages 140-156, February.
    2. Konstantinos Demertzis & Dimitrios Tsiotas & Lykourgos Magafas, 2020. "Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    3. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    4. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    5. Daniel Gervini, 2006. "Free‐knot spline smoothing for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 671-687, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Klabjan & Daniel Adelman, 2007. "An Infinite-Dimensional Linear Programming Algorithm for Deterministic Semi-Markov Decision Processes on Borel Spaces," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 528-550, August.
    2. Tetsuo Iida & Paul H. Zipkin, 2006. "Approximate Solutions of a Dynamic Forecast-Inventory Model," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 407-425, October.
    3. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    4. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    5. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    6. Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
    7. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    8. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2013. "Dynamic Programming and Value-Function Approximation in Sequential Decision Problems: Error Analysis and Numerical Results," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 380-416, February.
    9. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    10. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    11. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    12. Chen, Ruoran & Deng, Tianhu & Huang, Simin & Qin, Ruwen, 2015. "Optimal crude oil procurement under fluctuating price in an oil refinery," European Journal of Operational Research, Elsevier, vol. 245(2), pages 438-445.
    13. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
    15. Höfferl, F. & Steinschorn, D., 2009. "A dynamic programming extension to the steady state refinery-LP," European Journal of Operational Research, Elsevier, vol. 197(2), pages 465-474, September.
    16. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    17. Matthew S. Maxwell & Mateo Restrepo & Shane G. Henderson & Huseyin Topaloglu, 2010. "Approximate Dynamic Programming for Ambulance Redeployment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 266-281, May.
    18. Oleksandr Shlakhter & Chi-Guhn Lee, 2013. "Accelerated modified policy iteration algorithms for Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 61-76, August.
    19. Elcin Koc & Cem Iyigun, 2014. "Restructuring forward step of MARS algorithm using a new knot selection procedure based on a mapping approach," Journal of Global Optimization, Springer, vol. 60(1), pages 79-102, September.
    20. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:10:p:1099-:d:553756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.