IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i2p459-468.html
   My bibliography  Save this article

Network revenue management with inventory-sensitive bid prices and customer choice

Author

Listed:
  • Meissner, Joern
  • Strauss, Arne

Abstract

We develop an approximate dynamic programming approach to network revenue management models with customer choice that approximates the value function of the Markov decision process with a non-linear function which is separable across resource inventory levels. This approximation can exhibit significantly improved accuracy compared to currently available methods. It further allows for arbitrary aggregation of inventory units and thereby reduction of computational workload, yields upper bounds on the optimal expected revenue that are provably at least as tight as those obtained from previous approaches. Computational experiments for the multinomial logit choice model with distinct consideration sets show that policies derived from our approach can outperform some recently proposed alternatives, and we demonstrate how aggregation can be used to balance solution quality and runtime.

Suggested Citation

  • Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:459-468
    DOI: 10.1016/j.ejor.2011.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711005625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    2. Garrett van Ryzin & Gustavo Vulcano, 2008. "Computing Virtual Nesting Controls for Network Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 448-467, October.
    3. Joern Meissner & Arne Strauss & Kalyan Talluri, 2011. "An Enhanced Concave Program Relaxation for Choice Network Revenue Management," Working Papers MRG/0020, Department of Management Science, Lancaster University, revised Jan 2011.
    4. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    5. Zhang, Dan & Cooper, William L., 2009. "Pricing substitutable flights in airline revenue management," European Journal of Operational Research, Elsevier, vol. 197(3), pages 848-861, September.
    6. Wen-Chyuan Chiang & Jason C.H. Chen & Xiaojing Xu, 2007. "An overview of research on revenue management: current issues and future research," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 1(1), pages 97-128.
    7. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    8. Kalyan Talluri & Garrett van Ryzin, 1999. "A Randomized Linear Programming Method for Computing Network Bid Prices," Transportation Science, INFORMS, vol. 33(2), pages 207-216, May.
    9. Chen, Lijian & Homem-de-Mello, Tito, 2010. "Mathematical programming models for revenue management under customer choice," European Journal of Operational Research, Elsevier, vol. 203(2), pages 294-305, June.
    10. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    11. Dan Zhang & William L. Cooper, 2005. "Revenue Management for Parallel Flights with Customer-Choice Behavior," Operations Research, INFORMS, vol. 53(3), pages 415-431, June.
    12. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    13. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    14. Joern Meissner & Arne Strauss, 2009. "Choice-Based Network Revenue Management under Weak Market Segmentation," Working Papers MRG/0012, Department of Management Science, Lancaster University, revised May 2010.
    15. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    16. S. L. Brumelle & J. I. McGill & T. H. Oum & K. Sawaki & M. W. Tretheway, 1990. "Allocation of Airline Seats between Stochastically Dependent Demands," Transportation Science, INFORMS, vol. 24(3), pages 183-192, August.
    17. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    18. Jeffrey D. Camm & Amitabh S. Raturi & Shigeru Tsubakitani, 1990. "Cutting Big M Down to Size," Interfaces, INFORMS, vol. 20(5), pages 61-66, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
    2. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    3. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    4. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    5. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    6. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    7. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
    8. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    9. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    10. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    11. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    12. Dan Zhang & Zhaosong Lu, 2013. "Assessing the Value of Dynamic Pricing in Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 102-115, February.
    13. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    14. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    15. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    16. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.
    17. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
    18. Chan Seng Pun & Diego Klabjan & Fikri Karaesmen & Sergey Shebalov, 2016. "Itinerary-based nesting control with upsell," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(2), pages 107-137, April.
    19. Guillermo Gallego & Richard Ratliff & Sergey Shebalov, 2015. "A General Attraction Model and Sales-Based Linear Program for Network Revenue Management Under Customer Choice," Operations Research, INFORMS, vol. 63(1), pages 212-232, February.
    20. Kavitha Balaiyan & R. K. Amit & Atul Kumar Malik & Xiaodong Luo & Amit Agarwal, 2019. "Joint forecasting for airline pricing and revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(6), pages 465-482, December.

    More about this item

    Keywords

    Revenue management; Dynamic programming/optimal control: applications; Approximate;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:459-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.