IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v30y2003i4p349-359.html
   My bibliography  Save this article

Assessing local cluster influence in generalized linear mixed models

Author

Listed:
  • Liming Xiang
  • Andy Lee
  • Siu-Keung Tse

Abstract

This paper investigates local influence measures for assessing cluster influence in generalized linear mixed models. Several cluster-specific perturbation schemes are considered. The proposed local influence diagnostics are applied to analyse maternity length of inpatient stay data where individual observations are nested within hospitals and the relative performance of hospitals is of interest.

Suggested Citation

  • Liming Xiang & Andy Lee & Siu-Keung Tse, 2003. "Assessing local cluster influence in generalized linear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(4), pages 349-359.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:4:p:349-359
    DOI: 10.1080/0266476032000035395
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476032000035395
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476032000035395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Jianguo & Lee, Andy H. & Vemuri, Siva Ram, 1999. "Mixture distribution analysis of length of hospital stay for efficient funding," Socio-Economic Planning Sciences, Elsevier, vol. 33(1), pages 39-59, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    3. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Liming & Tse, Siu-Keung & Lee, Andy H., 2002. "Influence diagnostics for generalized linear mixed models: applications to clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 759-774, October.
    2. Sara Dias & Valeska Andreozzi & Rosário Martins, 2013. "Analysis of HIV/AIDS DRG in Portugal: a hierarchical finite mixture model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(5), pages 715-723, October.
    3. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    4. Eva Williford & Valerie Haley & Louise-Anne McNutt & Victoria Lazariu, 2020. "Dealing with highly skewed hospital length of stay distributions: The use of Gamma mixture models to study delivery hospitalizations," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
    5. Chungkham Singh & Laishram Ladusingh, 2010. "Inpatient length of stay: a finite mixture modeling analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(2), pages 119-126, April.
    6. Zudi Lu & Yer Van Hui & Andy H. Lee, 2003. "Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications," Biometrics, The International Biometric Society, vol. 59(4), pages 1016-1026, December.
    7. Yau, Kelvin K. W. & Lee, Andy H. & Ng, Angus S. K., 2003. "Finite mixture regression model with random effects: application to neonatal hospital length of stay," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 359-366, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:4:p:349-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.