IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i6p1021-1042.html
   My bibliography  Save this article

Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data

Author

Listed:
  • Alejandra Tapia
  • Viviana Giampaoli
  • Maria del Pilar Diaz
  • Victor Leiva

Abstract

Longitudinal count responses are often analyzed with a Poisson mixed model. However, under overdispersion, these responses are better described by a negative binomial mixed model. Estimators of the corresponding parameters are usually obtained by the maximum likelihood method. To investigate the stability of these maximum likelihood estimators, we propose a methodology of sensitivity analysis using local influence. As count responses are discrete, we are unable to perturb them with the standard scheme used in local influence. Then, we consider an appropriate perturbation for the means of these responses. The proposed methodology is useful in different applications, but particularly when medical data are analyzed, because the removal of influential cases can change the statistical results and then the medical decision. We study the performance of the methodology by using Monte Carlo simulation and applied it to real medical data related to epilepsy and headache. All of these numerical studies show the good performance and potential of the proposed methodology.

Suggested Citation

  • Alejandra Tapia & Viviana Giampaoli & Maria del Pilar Diaz & Victor Leiva, 2019. "Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(6), pages 1021-1042, April.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:6:p:1021-1042
    DOI: 10.1080/02664763.2018.1531978
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2018.1531978
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2018.1531978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    2. Yonghui Liu & Guohua Mao & Víctor Leiva & Shuangzhe Liu & Alejandra Tapia, 2020. "Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution," Mathematics, MDPI, vol. 8(5), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:6:p:1021-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.