IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v178y2018i1d10.1007_s10957-018-1228-2.html
   My bibliography  Save this article

A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces

Author

Listed:
  • Gang Cai

    (Chongqing Normal University)

  • Aviv Gibali

    (ORT Braude College)

  • Olaniyi S. Iyiola

    (University of Wisconsin-Milwaukee)

  • Yekini Shehu

    (University of Nigeria)

Abstract

In this paper, we study the variational inequalities involving monotone and Lipschitz continuous mapping in Banach spaces. A new and simple iterative method, which combines Halpern’s technique and the subgradient extragradient idea, is given. Under mild and standard assumptions, we establish the strong convergence of our algorithm in a uniformly smooth and convex Banach spaces. We also present a modification of our method using a line-search approach, this enable to obtain strong convergence in real and reflexive Banach spaces, without the prior knowledge of the Lipschitz constant. Numerical experiments illustrate the performances of our new algorithm and provide a comparison with related algorithms. Our results generalize and extend some of the existing works in Hilbert spaces to Banach spaces as well as provide an extension from weak to strong convergence.

Suggested Citation

  • Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
  • Handle: RePEc:spr:joptap:v:178:y:2018:i:1:d:10.1007_s10957-018-1228-2
    DOI: 10.1007/s10957-018-1228-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1228-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1228-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rapeepan Kraikaew & Satit Saejung, 2014. "Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 399-412, November.
    2. Alfredo Iusem & Mostafa Nasri, 2011. "Korpelevich’s method for variational inequality problems in Banach spaces," Journal of Global Optimization, Springer, vol. 50(1), pages 59-76, May.
    3. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    2. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    2. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    3. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    4. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    5. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    6. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    7. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    8. Gang Cai & Qiao-Li Dong & Yu Peng, 2021. "Strong Convergence Theorems for Solving Variational Inequality Problems with Pseudo-monotone and Non-Lipschitz Operators," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 447-472, February.
    9. Chinedu Izuchukwu & Yekini Shehu & Jen-Chih Yao, 2022. "New inertial forward-backward type for variational inequalities with Quasi-monotonicity," Journal of Global Optimization, Springer, vol. 84(2), pages 441-464, October.
    10. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    11. Lu-Chuan Ceng & Adrian Petruşel & Ching-Feng Wen & Jen-Chih Yao, 2019. "Inertial-Like Subgradient Extragradient Methods for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive and Strictly Pseudocontractive Mappings," Mathematics, MDPI, vol. 7(9), pages 1-19, September.
    12. Cholamjiak, Watcharaporn & Suparatulatorn, Raweerote, 2023. "Strong convergence of a modified extragradient algorithm to solve pseudomonotone equilibrium and application to classification of diabetes mellitus," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Lu-Chuan Ceng & Ching-Feng Wen & Yeong-Cheng Liou & Jen-Chih Yao, 2022. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
    14. Lateef Olakunle Jolaoso & Christian Chibueze Okeke & Yekini Shehu, 2021. "Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces," Networks and Spatial Economics, Springer, vol. 21(4), pages 873-903, December.
    15. Yu. Malitsky & V. Semenov, 2015. "A hybrid method without extrapolation step for solving variational inequality problems," Journal of Global Optimization, Springer, vol. 61(1), pages 193-202, January.
    16. Bingnan Jiang & Yuanheng Wang & Jen-Chih Yao, 2021. "Multi-Step Inertial Regularized Methods for Hierarchical Variational Inequality Problems Involving Generalized Lipschitzian Mappings," Mathematics, MDPI, vol. 9(17), pages 1-20, August.
    17. Ying Liu & Hang Kong, 2019. "Strong convergence theorems for relatively nonexpansive mappings and Lipschitz-continuous monotone mappings in Banach spaces," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 1049-1065, December.
    18. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    19. Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    20. Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:178:y:2018:i:1:d:10.1007_s10957-018-1228-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.