IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1244-d391988.html
   My bibliography  Save this article

Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense

Author

Listed:
  • Maria Francesca Carfora

    (Istituto per le Applicazioni del Calcolo CNR, 80131 Napoli, Italy)

  • Isabella Torcicollo

    (Istituto per le Applicazioni del Calcolo CNR, 80131 Napoli, Italy)

Abstract

In this paper, a reaction-diffusion prey-predator system including the fear effect of predator on prey population and group defense has been considered. The conditions for the onset of cross-diffusion-driven instability are obtained by linear stability analysis. The technique of multiple time scales is employed to deduce the amplitude equation near Turing bifurcation threshold by choosing the cross-diffusion coefficient as a bifurcation parameter. The stability analysis of these amplitude equations leads to the identification of various Turing patterns driven by the cross-diffusion, which are also investigated through numerical simulations.

Suggested Citation

  • Maria Francesca Carfora & Isabella Torcicollo, 2020. "Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense," Mathematics, MDPI, vol. 8(8), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1244-:d:391988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    2. Capone, F. & Carfora, M.F. & De Luca, R. & Torcicollo, I., 2019. "Turing patterns in a reaction–diffusion system modeling hunting cooperation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 172-180.
    3. Capone, F. & Carfora, M.F. & De Luca, R. & Torcicollo, I., 2018. "On the dynamics of an intraguild predator–prey model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 17-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Feng & Kang, Yun, 2023. "Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Soumik & Ghosh, Uttam & Das, Debashis & Chakraborty, Sarbani & Sarkar, Abhijit, 2024. "Rich dynamics of a delay-induced stage-structure prey–predator model with cooperative behaviour in both species and the impact of prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 49-76.
    2. Maria Francesca Carfora & Isabella Torcicollo, 2022. "Traveling Band Solutions in a System Modeling Hunting Cooperation," Mathematics, MDPI, vol. 10(13), pages 1-11, July.
    3. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2022. "A Fractional Order Model to Study the Effectiveness of Government Measures and Public Behaviours in COVID-19 Pandemic," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    4. Ang, Tau Keong & Safuan, Hamizah M., 2019. "Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 158-168.
    5. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    6. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    7. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    8. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    10. Monica De Angelis, 2022. "Transport Phenomena in Excitable Systems: Existence of Bounded Solutions and Absorbing Sets," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
    11. Djilali, Salih & Cattani, Carlo, 2021. "Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    13. Capone, F. & Carfora, M.F. & De Luca, R. & Torcicollo, I., 2019. "Turing patterns in a reaction–diffusion system modeling hunting cooperation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 172-180.
    14. Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    15. Cuimin Liu & Yonggang Chen & Yingbin Yu & Zhen Wang, 2023. "Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    16. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 976-1002.
    17. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1244-:d:391988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.