IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p3020-d894425.html
   My bibliography  Save this article

A Fractional Order Model to Study the Effectiveness of Government Measures and Public Behaviours in COVID-19 Pandemic

Author

Listed:
  • Meghadri Das

    (Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

  • Guruprasad Samanta

    (Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India)

  • Manuel De la Sen

    (Institute of Research and Development of Processes, University of the Basque Country, 48940 Leioa, Spain)

Abstract

In this work, we emphasise the dynamical study of spreading COVID-19 in Bangladesh. Considering the uncertainty caused by the limited coronavirus (COVID-19) information, we have taken the modified Susceptible-Asymptomatic-Infectious-Hospitalised-Recovered (SAIHR) compartmental model in a Caputo fractional order system. We have also introduced public behavioural and government policy dynamics in our model. The dynamical nature of the solutions of the system is analysed and we have also calculated the sensitivity index of different parameters. It has been observed that public behaviour and government measures play an important role in controlling the pandemic situation. The government measures (social distance, vaccination, hospitalisation, awareness programme) are more helpful than only public responses to the eradication of the COVID-19 pandemic.

Suggested Citation

  • Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2022. "A Fractional Order Model to Study the Effectiveness of Government Measures and Public Behaviours in COVID-19 Pandemic," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3020-:d:894425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/3020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/3020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saha, Sangeeta & Dutta, Protyusha & Samanta, Guruprasad, 2022. "Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meghadri Das & Guruprasad Samanta & Manuel De la Sen, 2021. "Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model," Mathematics, MDPI, vol. 9(7), pages 1-34, March.
    2. Maria Francesca Carfora & Isabella Torcicollo, 2020. "Cross-Diffusion-Driven Instability in a Predator-Prey System with Fear and Group Defense," Mathematics, MDPI, vol. 8(8), pages 1-20, July.
    3. Pandey, Soumik & Ghosh, Uttam & Das, Debashis & Chakraborty, Sarbani & Sarkar, Abhijit, 2024. "Rich dynamics of a delay-induced stage-structure prey–predator model with cooperative behaviour in both species and the impact of prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 49-76.
    4. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    5. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    6. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    7. Li, Ning & Yan, Mengting, 2022. "Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Cuimin Liu & Yonggang Chen & Yingbin Yu & Zhen Wang, 2023. "Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    9. Zhang, Hai & Cheng, Jingshun & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2021. "Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays★," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:3020-:d:894425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.