IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p998-d373369.html
   My bibliography  Save this article

Modeling an Uncertain Productivity Learning Process Using an Interval Fuzzy Methodology

Author

Listed:
  • Min-Chi Chiu

    (Department of Industrial Engineering and Management, National Chin-Yi University of Technology, 57, Sec. 2, Zhongshan Rd., Taiping, Taichung City 411, Taiwan)

  • Tin-Chih Toly Chen

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan)

  • Keng-Wei Hsu

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 300, Taiwan)

Abstract

Existing methods for forecasting the productivity of a factory are subject to a major drawback—the lower and upper bounds of productivity are usually determined by a few extreme cases, which unacceptably widens the productivity range. To address this drawback, an interval fuzzy number (IFN)-based mixed binary quadratic programming (MBQP)–ordered weighted average (OWA) approach is proposed in this study for modeling an uncertain productivity learning process. In the proposed methodology, the productivity range is divided into the inner and outer sections, which correspond to the lower and upper membership functions of an IFN-based fuzzy productivity forecast, respectively. In this manner, all actual values are included in the outer section, whereas most of the values are included within the inner section to fulfill different managerial purposes. According to the percentages of outlier cases, a suitable forecasting strategy can be selected. To derive the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP model is proposed and optimized. Subsequently, according to the selected forecasting strategy, the OWA method is applied to defuzzify a fuzzy productivity forecast. The proposed methodology has been applied to the real case of a dynamic random access memory factory to evaluate its effectiveness. The experimental results indicate that the proposed methodology was superior to several existing methods, especially in terms of mean absolute error, mean absolute percentage error, and root mean square error in evaluating the forecasting accuracy. The forecasting precision achieved using the proposed methodology was also satisfactory.

Suggested Citation

  • Min-Chi Chiu & Tin-Chih Toly Chen & Keng-Wei Hsu, 2020. "Modeling an Uncertain Productivity Learning Process Using an Interval Fuzzy Methodology," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:998-:d:373369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Blanco-Mesa & Anna M. Gil-Lafuente & José M. Merigó, 2018. "Subjective stakeholder dynamics relationships treatment: a methodological approach using fuzzy decision-making," Computational and Mathematical Organization Theory, Springer, vol. 24(4), pages 441-472, December.
    2. EMROUZNEJAD, Ali & ROSTAMY-MALKHALIFEH, Mohsen & HATAMI-MARBINI, Adel & TAVANA, Madjid, 2011. "An overall profit Malmquist productivity index with fuzzy and interval data," LIDAM Reprints CORE 2375, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Michael A. Lapré & Luk N. Van Wassenhove, 2001. "Creating and Transferring Knowledge for Productivity Improvement in Factories," Management Science, INFORMS, vol. 47(10), pages 1311-1325, October.
    4. Toly Chen & Chungwei Ou & Yu-Cheng Lin, 2019. "A fuzzy polynomial fitting and mathematical programming approach for enhancing the accuracy and precision of productivity forecasting," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 85-107, June.
    5. Vassilis C. Gerogiannis & Panos Fitsilis & Dimitra Voulgaridou & Konstantinos A. Kirytopoulos & Evi Sachini, 2010. "A case study for project and portfolio management information system selection: a group AHP-scoring model approach," International Journal of Project Organisation and Management, Inderscience Enterprises Ltd, vol. 2(4), pages 361-381.
    6. Toly Chen, 2018. "Fitting an uncertain productivity learning process using an artificial neural network approach," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 422-439, September.
    7. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2018. "Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 23-57, National Bureau of Economic Research, Inc.
    8. Horng-Ren Tsai & Toly Chen, 2014. "Enhancing the Sustainability of a Location-Aware Service through Optimization," Sustainability, MDPI, vol. 6(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kariem Soliman, 2021. "Are Industrial Robots a new GPT? A Panel Study of Nine European Countries with Capital and Quality-adjusted Industrial Robots as Drivers of Labour Productivity Growth," EIIW Discussion paper disbei307, Universitätsbibliothek Wuppertal, University Library.
    2. Christian Rammer & Gastón P Fernández & Dirk Czarnitzki, 2021. "Artificial Intelligence and Industrial Innovation: Evidence from Firm-Level Data," Working Papers of Department of Economics, Leuven 674605, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    3. Naudé, Wim & Nagler, Paula, 2022. "The Ossified Economy: The Case of Germany, 1870-2020," IZA Discussion Papers 15607, Institute of Labor Economics (IZA).
    4. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    5. Yu-Cheng Lin & Toly Chen & Li-Chih Wang, 2018. "Integer nonlinear programming and optimized weighted-average approach for mobile hotel recommendation by considering travelers’ unknown preferences," Operational Research, Springer, vol. 18(3), pages 625-643, October.
    6. Jeffrey Ding & Allan Dafoe, 2021. "Engines of Power: Electricity, AI, and General-Purpose Military Transformations," Papers 2106.04338, arXiv.org.
    7. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    8. Ekaterina Prytkova, 2021. "ICT's Wide Web: a System-Level Analysis of ICT's Industrial Diffusion with Algorithmic Links," Jena Economics Research Papers 2021-005, Friedrich-Schiller-University Jena.
    9. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    10. Tim R. Holcomb & R. Duane Ireland & R. Michael Holmes Jr. & Michael A. Hitt, 2009. "Architecture of Entrepreneurial Learning: Exploring the Link among Heuristics, Knowledge, and Action," Entrepreneurship Theory and Practice, , vol. 33(1), pages 167-192, January.
    11. Warwick J McKibbin & Augustus J Panton, 2018. "Twenty-five Years of Inflation Targeting in Australia: Are There Better Alternatives for the Next Twenty-five Years?," RBA Annual Conference Volume (Discontinued), in: John Simon & Maxwell Sutton (ed.),Central Bank Frameworks: Evolution or Revolution?, Reserve Bank of Australia.
    12. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    13. Klein, Daniel & Ludwig, Christopher A. & Nicolay, Katharina, 2020. "Internal digitalization and tax-efficient decision making," ZEW Discussion Papers 20-051, ZEW - Leibniz Centre for European Economic Research.
    14. Torsten Heinrich, 2021. "Epidemics in modern economies," Chemnitz Economic Papers 045, Department of Economics, Chemnitz University of Technology, revised May 2021.
    15. Adrian S. Choo & Kevin W. Linderman & Roger G. Schroeder, 2007. "Method and Psychological Effects on Learning Behaviors and Knowledge Creation in Quality Improvement Projects," Management Science, INFORMS, vol. 53(3), pages 437-450, March.
    16. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    17. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    18. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    19. von Maydell, Richard, 2024. "Artificial Intelligence and its Effect on Competition and Factor Income Shares," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277654, Verein für Socialpolitik / German Economic Association, revised 2024.
    20. Robert S. Huckman & Bradley R. Staats, 2011. "Fluid Tasks and Fluid Teams: The Impact of Diversity in Experience and Team Familiarity on Team Performance," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 310-328, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:998-:d:373369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.