IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp376-387.html
   My bibliography  Save this article

Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry

Author

Listed:
  • Aghayi, Nazila
  • Maleki, Bentolhoda

Abstract

We employ a method that incorporates both direct and indirect approaches based on a directional distance function. In the proposed model, which is based on constant returns to scale, inputs are assumed to be constant. Hence, the presented model is output-oriented. As both desirable and undesirable interval outputs are concerned in this study, we present two evaluation approaches to address the uncertainty problem. First, a lower bound and an upper bound for efficiency are proposed based on the interval approach, and then all units are divided into three categories. It is possible that the model may not remain feasible when data ranges over an interval, and since the data ranges across a bounded, closed, convex set, the robust approach can be adopted for the assessment of decision making units. In this method, unlike the interval approach, the efficiency value calculated for DMUs is certain, and the robust optimal solution is yielded by the proposed level of conservatism for interval parameters. In fact, it calculates the worst optimal solution. In addition, the results of both methods are analyzed and compared in a simple numerical example. Various branches of the National Bank of Iran in Ardabil, Iran, are also evaluated.

Suggested Citation

  • Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:376-387
    DOI: 10.1016/j.energy.2016.06.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630860X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    3. EMROUZNEJAD, Ali & ROSTAMY-MALKHALIFEH, Mohsen & HATAMI-MARBINI, Adel & TAVANA, Madjid, 2011. "An overall profit Malmquist productivity index with fuzzy and interval data," LIDAM Reprints CORE 2375, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    5. Lim, Sungmook & Zhu, Joe, 2016. "A note on two-stage network DEA model: Frontier projection and duality," European Journal of Operational Research, Elsevier, vol. 248(1), pages 342-346.
    6. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    7. Nazila Aghayi & Madjid Tavana & Mohammad Ali Raayatpanah, 2016. "Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 385-405.
    8. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
    9. Despotis, Dimitris K. & Smirlis, Yiannis G., 2002. "Data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 140(1), pages 24-36, July.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    12. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    13. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    14. Robert E. Bixby & John W. Gregory & Irvin J. Lustig & Roy E. Marsten & David F. Shanno, 1992. "Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods," Operations Research, INFORMS, vol. 40(5), pages 885-897, October.
    15. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    16. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    17. Liu, Wenbin & Zhou, Zhongbao & Ma, Chaoqun & Liu, Debin & Shen, Wanfang, 2015. "Two-stage DEA models with undesirable input-intermediate-outputs," Omega, Elsevier, vol. 56(C), pages 74-87.
    18. SHOKOUHI, Amir H. & HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber, 2010. "A robust optimization approach for imprecise data envelopment analysis," LIDAM Reprints CORE 2215, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    2. Bilel Jarraya & Hatem Afi & Anis Omri, 2023. "Analyzing the Profitability and Efficiency in European Non-Life Insurance Industry," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-25, June.
    3. Pejman Peykani & Jafar Gheidar-Kheljani & Reza Farzipoor Saen & Emran Mohammadi, 2022. "Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data," Operational Research, Springer, vol. 22(5), pages 5529-5567, November.
    4. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    5. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    6. Ather Hassan Dar & Somesh Kumar Mathur & Sila Mishra, 2021. "The Efficiency of Indian Banks: A DEA, Malmquist and SFA Analysis with Bad Output," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 653-701, December.
    7. Shi, Xiao & Wang, Libo & Emrouznejad, Ali, 2023. "Performance evaluation of Chinese commercial banks by an improved slacks-based DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    8. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    9. Ying Li & Yung‐ho Chiu & Tai‐Yu Lin & Hongyi Cen & Yabin Liu, 2021. "Evaluation of natural disaster treatment efficiency in 27 Chinese provinces," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 256-288, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    2. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    3. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    4. Adel Hatami-Marbini & Per J. Agrell & Hirofumi Fukuyama & Kobra Gholami & Pegah Khoshnevis, 2017. "The role of multiplier bounds in fuzzy data envelopment analysis," Annals of Operations Research, Springer, vol. 250(1), pages 249-276, March.
    5. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    6. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    7. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    8. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
    9. Young-Tae Chang & Nan Zhang, 2017. "Environmental efficiency of transportation sectors in China and Korea," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 68-93, March.
    10. Pereira, Miguel Alves & Camanho, Ana Santos & Figueira, José Rui & Marques, Rui Cunha, 2021. "Incorporating preference information in a range directional composite indicator: The case of Portuguese public hospitals," European Journal of Operational Research, Elsevier, vol. 294(2), pages 633-650.
    11. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    12. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    13. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    14. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    15. Konstantinos Petridis, 2022. "Spatio-temporal efficiency measurement under undesirable outputs using multi-objective programming: a GAMS representation," Annals of Operations Research, Springer, vol. 311(2), pages 1183-1202, April.
    16. Li, Feng & Zhu, Qingyuan & Chen, Zhi, 2019. "Allocating a fixed cost across the decision making units with two-stage network structures," Omega, Elsevier, vol. 83(C), pages 139-154.
    17. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    18. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    19. Hua Zhang & Sidai Guo & Yubing Qian & Yan Liu & Chengpeng Lu, 2020. "Dynamic analysis of agricultural carbon emissions efficiency in Chinese provinces along the Belt and Road," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    20. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:376-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.