IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-1665-5_8.html
   My bibliography  Save this book chapter

Ant Colony Optimization: Overview and Recent Advances

In: Handbook of Metaheuristics

Author

Listed:
  • Marco Dorigo

    (IRIDIA, Université Libre de Bruxelles (ULB))

  • Thomas Stützle

    (IRIDIA, Université Libre de Bruxelles (ULB))

Abstract

Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the pheromone trail laying and following behavior of some ant species. Artificial ants in ACO are stochastic solution construction procedures that build candidate solutions for the problem instance under concern by exploiting (artificial) pheromone information that is adapted based on the ants’ search experience and possibly available heuristic information. Since the proposal of the Ant System, the first ACO algorithm, many significant research results have been obtained. These contributions focused on the development of high-performing algorithmic variants, the development of a generic algorithmic framework for ACO algorithms, successful applications of ACO algorithms to a wide range of computationally hard problems, and the theoretical understanding of properties of ACO algorithms. This chapter reviews these developments and gives an overview of recent research trends in ACO.

Suggested Citation

  • Marco Dorigo & Thomas Stützle, 2010. "Ant Colony Optimization: Overview and Recent Advances," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 227-263, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-1665-5_8
    DOI: 10.1007/978-1-4419-1665-5_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    2. Nebojsa Bacanin & Timea Bezdan & Eva Tuba & Ivana Strumberger & Milan Tuba, 2020. "Monarch Butterfly Optimization Based Convolutional Neural Network Design," Mathematics, MDPI, vol. 8(6), pages 1-33, June.
    3. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-1665-5_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.