IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i4p1459-1468.html
   My bibliography  Save this article

Chaotic dynamics of the fractionally damped Duffing equation

Author

Listed:
  • Sheu, Long-Jye
  • Chen, Hsien-Keng
  • Chen, Juhn-Horng
  • Tam, Lap-Mou

Abstract

Vibration phenomena of the fractionally damped systems have attracted increasing attentions in recent years. In this paper, dynamics of the fractionally damped Duffing equation is examined. The fractionally damped Duffing equation is transformed into a set of fractional integral equations solved by a predictor–corrector method. The effect of fractional order of damping on the dynamic behaviors of the motion is the main subject of the study. In this work, bifurcation of the parameter-dependent system is drawn numerically. The time evolutions of the nonlinear dynamical system responses are also described in phase portraits and the Poincaré map technique. In addition, the occurrence and the nature of chaotic attractors are verified by evaluating the largest Lyapunov exponents. Results obtained from this study illustrates that the fractional order of damping has a significant effect on the dynamic behaviors of the motion. The size of the attractor trends to enlarge when fractional order α increases. Regular motions (including period-3 motion) and chaotic motions are examined. Moreover, a period doubling route to chaos is also found. Many period-3 windows are also observed in bifurcation diagram.

Suggested Citation

  • Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou, 2007. "Chaotic dynamics of the fractionally damped Duffing equation," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1459-1468.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1459-1468
    DOI: 10.1016/j.chaos.2005.11.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790501163X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    2. Gao, Xin & Yu, Juebang, 2005. "Chaos in the fractional order periodically forced complex Duffing’s oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1097-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asiain, Erick & Garrido, Rubén, 2021. "Anti-Chaos control of a servo system using nonlinear model reference adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. María Pilar Velasco & David Usero & Salvador Jiménez & Luis Vázquez & José Luis Vázquez-Poletti & Mina Mortazavi, 2020. "About Some Possible Implementations of the Fractional Calculus," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
    3. Barba-Franco, J.J. & Gallegos, A. & Jaimes-Reátegui, R. & Pisarchik, A.N., 2022. "Dynamics of a ring of three fractional-order Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Ali, Irfan & Masood, W. & Rizvi, H. & Alrowaily, Albandari W. & Ismaeel, Sherif M.E. & El-Tantawy, S.A., 2023. "Archipelagos, islands, necklaces, and other exotic structures in external force-driven chaotic dusty plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Shen, Yongjun & Yang, Shaopu & Sui, Chuanyi, 2014. "Analysis on limit cycle of fractional-order van der Pol oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 67(C), pages 94-102.
    6. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    7. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    3. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    4. Shao, Shiquan, 2009. "Controlling general projective synchronization of fractional order Rossler systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1572-1577.
    5. Chen, Liping & Pan, Wei & Wu, Ranchao & Wang, Kunpeng & He, Yigang, 2016. "Generation and circuit implementation of fractional-order multi-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 22-31.
    6. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    7. Chen, Juhn-Horng & Chen, Wei-Ching, 2008. "Chaotic dynamics of the fractionally damped van der Pol equation," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 188-198.
    8. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    9. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    10. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.
    12. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    13. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    14. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    15. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    16. Junmei Guo & Chunrui Ma & Xinheng Wang & Fangfang Zhang & Michaël Antonie van Wyk & Lei Kou, 2021. "A New Synchronization Method for Time-Delay Fractional Complex Chaotic System and Its Application," Mathematics, MDPI, vol. 9(24), pages 1-20, December.
    17. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    18. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    19. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    20. Lu, Jun Guo, 2006. "Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 107-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1459-1468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.