IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p551-d343229.html
   My bibliography  Save this article

Possibility Measure of Accepting Statistical Hypothesis

Author

Listed:
  • Jung-Lin Hung

    (Physical Education Office, Kun Shan University, Tainan 710303, Taiwan)

  • Cheng-Che Chen

    (Department of Marketing and Logistics Management, Far East University, Tainan 74448, Taiwan)

  • Chun-Mei Lai

    (Department of Marketing and Logistics Management, Far East University, Tainan 74448, Taiwan)

Abstract

Taking advantage of the possibility of fuzzy test statistic falling in the rejection region, a statistical hypothesis testing approach for fuzzy data is proposed in this study. In contrast to classical statistical testing, which yields a binary decision to reject or to accept a null hypothesis, the proposed approach is to determine the possibility of accepting a null hypothesis (or alternative hypothesis). When data are crisp, the proposed approach reduces to the classical hypothesis testing approach.

Suggested Citation

  • Jung-Lin Hung & Cheng-Che Chen & Chun-Mei Lai, 2020. "Possibility Measure of Accepting Statistical Hypothesis," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:551-:d:343229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Gholamreza Hesamian & Mohamad Ghasem Akbari, 2017. "Statistical test based on intuitionistic fuzzy hypotheses," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 9324-9334, September.
    3. Liu, Shiang-Tai & Kao, Chiang, 2004. "Solving fuzzy transportation problems based on extension principle," European Journal of Operational Research, Elsevier, vol. 153(3), pages 661-674, March.
    4. Abbas Parchami & S. Mahmoud Taheri & Reinhard Viertl & Mashaallah Mashinchi, 2018. "Minimax test for fuzzy hypotheses," Statistical Papers, Springer, vol. 59(4), pages 1623-1648, December.
    5. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2010. "Fuzzy p-value in testing fuzzy hypotheses with crisp data," Statistical Papers, Springer, vol. 51(1), pages 209-226, January.
    6. P. Filzmoser & R. Viertl, 2004. "Testing hypotheses with fuzzy data: The fuzzy p-value," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 59(1), pages 21-29, February.
    7. Wu, Chien-Wei, 2009. "Decision-making in testing process performance with fuzzy data," European Journal of Operational Research, Elsevier, vol. 193(2), pages 499-509, March.
    8. Shima Yosefi & Mohsen Arefi & Mohammad Ghasem Akbari, 2016. "A new approach for testing fuzzy hypotheses based on likelihood ratio statistic," Statistical Papers, Springer, vol. 57(3), pages 665-688, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    2. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    3. Abbas Parchami & S. Mahmoud Taheri & Reinhard Viertl & Mashaallah Mashinchi, 2018. "Minimax test for fuzzy hypotheses," Statistical Papers, Springer, vol. 59(4), pages 1623-1648, December.
    4. Shima Yosefi & Mohsen Arefi & Mohammad Ghasem Akbari, 2016. "A new approach for testing fuzzy hypotheses based on likelihood ratio statistic," Statistical Papers, Springer, vol. 57(3), pages 665-688, September.
    5. Abbas Parchami & S. Taheri & Mashaallah Mashinchi, 2012. "Testing fuzzy hypotheses based on vague observations: a p-value approach," Statistical Papers, Springer, vol. 53(2), pages 469-484, May.
    6. Bogdana Stanojević & Sorin Nǎdǎban, 2023. "Empiric Solutions to Full Fuzzy Linear Programming Problems Using the Generalized “min” Operator," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    7. Nataliya Chukhrova & Arne Johannssen, 2020. "Randomized versus non-randomized hypergeometric hypothesis testing with crisp and fuzzy hypotheses," Statistical Papers, Springer, vol. 61(6), pages 2605-2641, December.
    8. Islam, Sahidul & Roy, Tapan Kumar, 2006. "A new fuzzy multi-objective programming: Entropy based geometric programming and its application of transportation problems," European Journal of Operational Research, Elsevier, vol. 173(2), pages 387-404, September.
    9. S. Taheri & G. Hesamian, 2013. "A generalization of the Wilcoxon signed-rank test and its applications," Statistical Papers, Springer, vol. 54(2), pages 457-470, May.
    10. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    11. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    12. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    13. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    14. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    15. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    16. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    17. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    18. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    19. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    20. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:551-:d:343229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.