IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4864-d1293610.html
   My bibliography  Save this article

Empiric Solutions to Full Fuzzy Linear Programming Problems Using the Generalized “min” Operator

Author

Listed:
  • Bogdana Stanojević

    (Mathematical Institute of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia)

  • Sorin Nǎdǎban

    (Department of Mathematics and Computer Science, Aurel Vlaicu University of Arad, RO-310330 Arad, Romania)

Abstract

Solving optimization problems in a fuzzy environment is an area widely addressed in the recent literature. De-fuzzification of data, construction of crisp more or less equivalent problems, unification of multiple objectives, and solving a single crisp optimization problem are the general descriptions of many procedures that approach fuzzy optimization problems. Such procedures are misleading (since relevant information is lost through de-fuzzyfication and aggregation of more objectives into a single one), but they are still dominant in the literature due to their simplicity. In this paper, we address the full fuzzy linear programming problem, and provide solutions in full accordance with the extension principle. The main contribution of this paper is in modeling the conjunction of the fuzzy sets using the “product” operator instead of “min” within the definition of the solution concept. Our theoretical findings show that using a generalized “min” operator within the extension principle assures thinner shapes to the derived fuzzy solutions compared to those available in the literature. Thinner shapes are always desirable, since such solutions provide the decision maker with more significant information.

Suggested Citation

  • Bogdana Stanojević & Sorin Nǎdǎban, 2023. "Empiric Solutions to Full Fuzzy Linear Programming Problems Using the Generalized “min” Operator," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4864-:d:1293610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Ali Ebrahimnejad & Jose Luis Verdegay, 2018. "A new approach for solving fully intuitionistic fuzzy transportation problems," Fuzzy Optimization and Decision Making, Springer, vol. 17(4), pages 447-474, December.
    3. Liu, Shiang-Tai & Kao, Chiang, 2004. "Solving fuzzy transportation problems based on extension principle," European Journal of Operational Research, Elsevier, vol. 153(3), pages 661-674, March.
    4. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    2. Jung-Lin Hung & Cheng-Che Chen & Chun-Mei Lai, 2020. "Possibility Measure of Accepting Statistical Hypothesis," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    3. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    4. Divya Sharma & Dinesh C. S. Bisht & Pankaj Kumar Srivastava, 2024. "Solution of fuzzy transportation problem based upon pentagonal and hexagonal fuzzy numbers," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4348-4354, September.
    5. Islam, Sahidul & Roy, Tapan Kumar, 2006. "A new fuzzy multi-objective programming: Entropy based geometric programming and its application of transportation problems," European Journal of Operational Research, Elsevier, vol. 173(2), pages 387-404, September.
    6. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    7. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    8. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    9. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    10. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    11. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    12. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    13. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    14. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    15. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    16. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    17. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    18. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    19. Sumati Mahajan & S. K. Gupta, 2021. "On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions," Annals of Operations Research, Springer, vol. 296(1), pages 211-241, January.
    20. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4864-:d:1293610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.